Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Shielding research at the Hanford Site

Conference ·
OSTI ID:7189986

The original three plutonium production reactors (B, D, and F) constructed at the Hanford Site in 1943--1944 had shields consisting of alternate layers of iron and a high-density pressed-wood product called Masonite *. This design was the engineering response to the scientific request for a mixture of iron and hydrogen. The design mix was based on earlier studies using iron and water or iron and paraffin; however, these materials did not have satisfactory structural characteristics. Although the shields performed satisfactorily, the fabrication cost was high. Each piece had to be machined precisely to fit within structural webs, so as not to introduce cracks through the shield. Before 1950, two additional reactors (DR and H) were built using the same shield design. At the request of R.L. Dickeman, an experimental facility was included in the top of the DR Reactor to permit evaluation of shield materials. Concurrent with the measurement of attenuation properties of materials in this facility, a program was undertaken to investigate the structural characteristics of various high-density Portland cement concretes. This research effort continued for over a decade, and led to the use of these concretes in subsequent reactor shields at the Hanford Site and elsewhere with significant savings in construction costs. Completion of the attenuation and structural measurements on the various high-density concretes provided a database that could be used in the design of shields for new reactors. At the Hanford Site, the top shield of the C Reactor was constructed of concrete, whereas the sides were constructed of iron-Masonite. As more and more data were acquired, the later rectors, KE, KW, and NPR, had shields of various tested concretes. Using concrete in these shields materially reduced the cost of the facilities. Additionally, studies on heat damage to the masonite resulted in changes that permitted increases in production, while at the same time maintaining shield integrity.

Research Organization:
Westinghouse Hanford Co., Richland, WA (United States)
Sponsoring Organization:
DOE; USDOE, Washington, DC (United States)
DOE Contract Number:
AC06-87RL10930
OSTI ID:
7189986
Report Number(s):
WHC-SA-1550; CONF-921102--49; ON: DE93004491
Country of Publication:
United States
Language:
English