An algorithm for using a slide-screw tuner as a computer-controlled impedance
In the testing of active microwave components, a common test procedure is to evaluate a device's performance when subjected to an all-phase, constant-standing-wave-ratio (APCS) load pull. Such a test specification is useful in verifying a device's stability and mismatch performance. Typically, APCS pulls are tediously performed by hand, with manually operated tuners. However, with the advent of mechanical, computer-controlled tuners, it is how possible to automate this procedure. At Sandia, the goal was to integrate an APCS pull capability into a multi-test, single-connection tester. (The single-connection concept implies that many test, such as network analysis, spectral analysis, and noise figure measurements can be made from a one-time, device-to-tester connection). Consequently, the slide-screw tuner was the obvious choice due to its removable probe capability. Hence, it became necessary to develop a custom algorithm capable of utilizing the tuner in an impedance-finding mode. The general concept used in implementing this capability was to empirically characterize the tuner over and acceptable range of tuner positions, and then use this characterization to intelligently predict the tuner positions needed to present the desired impedance. 4 figs.
- Research Organization:
- Sandia National Labs., Albuquerque, NM (USA)
- Sponsoring Organization:
- DOE/DP
- DOE Contract Number:
- AC04-76DP00789
- OSTI ID:
- 7140255
- Report Number(s):
- SAND-90-1209C; CONF-9005175--1; ON: DE90010657
- Country of Publication:
- United States
- Language:
- English
Similar Records
Computer Aided Design of Stub Tuners for Impedance Matching
Liquid impedance matching system for Ion Cyclotron heating
Related Subjects
426000* -- Engineering-- Components
Electron Devices & Circuits-- (1990-)
440800 -- Miscellaneous Instrumentation-- (1990-)
47 OTHER INSTRUMENTATION
99 GENERAL AND MISCELLANEOUS
990200 -- Mathematics & Computers
ALGORITHMS
CALIBRATION
ELECTRONIC EQUIPMENT
EQUIPMENT
IMPEDANCE
MATHEMATICAL LOGIC
MICROWAVE EQUIPMENT
NOISE
PERFORMANCE TESTING
SENSITIVITY
TESTING
TUNING