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Introduction
In the testing of active microwave components, a common test-.,,, 
procedure is to evaluate a device's performance when subjected to 
an all-phase, constant-standing-wave-ratio (APCS) load pull. 
Such a test specification is useful in verifying a device's 
stability and mismatch performance. Typically, APCS pulls are 
tediously performed by hand, with manually operated tuners. 
However, with the advent of mechanical, computer-controlled 
tuners, it is now possible to automate this procedure.
Two types of mechanical, automated tuners are currently 
available: double-slug and slide-screw. The two types have
complimentary advantages and disadvantages. For example, a 
slide-screw tuner offers the advantage of having a removable 
probe, which enables the tuner to easily revert to a low-loss, 50 
n line. A double-slug tuner, on the other hand, is always lossy 
due to its permanent slugs. However, the double-slug tuning 
mechanism does offer the advantage of being easily amenable to 
mathematical modeling, while the slide-screw mechanism is 
nonlinear and difficult to model. In fact, because of the slide- 
screw modeling difficulty, only the double-slug manufacturer 
supports the capability to operate a tuner as a true computer- 
controlled impedance.
The primary manufacturer-supported application for both tuners is 
to provide load pulls for the determination of power and noise 
contours. For this application, an impedance-finding capability 
is not necessary. For example, in power contouring, the test 
device's output power is measured and recorded at previously 
characterized tuner positions (which represent impedances 
randomly scattered over the Smith chart). Surface-fitting and 
contouring algorithms are then applied to the resulting data to 
calculate the constant power contours. Hence, the contouring 
software correlates power to impedance, not impedance to tuner 
positions, as would be needed for an impedance-locating 
capability. Unfortunately, it is an impedance-locating 
capability that is specifically needed to perform an APCS pull.
At Sandia, our goal was to integrate an APCS pull capability into 
a multi-test, single-connection tester. (The single-connection 
concept implies that many tests, such as network analysis, 
spectral analysis, and noise figure measurements can be made from 
a one-time, device-to-tester connection.) Consequently, the 
slide-screw tuner was the obvious choice due to its removable
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probe capability. Hence, it became necessary to develop a custom 
algorithm capable of utilizing the tuner in an impedance-finding 
mode. The general concept used in implementing this capability 
was to empirically characterize the tuner over an acceptable 
range of tuner positions, and then use this characterization to 
intelligently predict the tuner positions needed to present the 
desired impedance.

Tuner Characterization/Calibration
The slide-screw tuner used by Sandia consists of a "trough" 
transmission line, a motor-controlled probe, and a motor- 
controlled carriage. The carriage is designed to carry the probe 
as it traverses the transmission line. The tuner's response 
(reflection coefficient) is controlled by the probe's insertion 
into the trough (which primarily varies magnitude) and by the 
carriage's position along the line (which primarily varies 
phase). The nonlinear nature of the tuner's response can be 
broken down into three main areas: 1) magnitude sensitivity to 
probe insertion, 2) phase variation with probe insertion, and 3) 
magnitude variation with carriage position. Hence, any attempt 
to characterize the tuner must account for these response 
deviations.
The Sandia tuner characterization procedure operates by creating 
a "calibration grid" of the tuner's response. The grid is 
created by measuring the tuner's reflection coefficient at equal, 
even steps of motor positions. The motor movement ranges are 
determined by the magnitude and phase of the grid points which 
which form the cater-cornered grid vertices. In other words, the 
calibration grid is specified by translating a magnitude and 
phase range into corresponding motor movement ranges. The 
general steps used in the calibration procedure are as follows:

1) Tuner is "zeroed" (reference motor positions defined).
2) Operator enters the calibration frequency, grid density 
(number of carriage and probe motor positions), and 
calibration window size (magnitude and phase ranges).
3) Tuner software intelligently searches for the calibration 
window corners that define the motor movement limits and 
records the corresponding motor positions.
4) Tuner software computes the motor steps corresponding to 
the grid intervals and moves the tuner (in an efficient 
manner) to each grid point, where it measures and records the 
tuner's response.

Step 1 of the algorithm is implemented by moving the carriage and 
probe motors to their negative movement limits; this procedure 
fully inserts the probe and moves the carriage to the reference 
end of the trough. Each tuner motor detects its motion limits 
via an optical switch. However, because the switch's trigger 
position can vary slightly with motor speed, a repeatable "zero



position” reference is obtained by backing out the motor in 
single-step increments until the optical switch de-triggers.
In searching for the calibration window vertices (step 3) , the 
tuner needs to know each motor's sensitivity and the carriage's 
phase orientation (whether positive carriage movement results in 
a positive or negative phase change). The carriage's sensitivity 
can be dynamically determined by simply moving the carriage a 
fixed number of steps and then measuring the magnitude and 
polarity of the resulting phase change. The probe's sensitivity 
can also be measured, but the resulting value would only be 
accurate for a given insertion range. This is because the 
probe's sensitivity is a function of its insertion. The 
algorithm resolves this problem by using a fixed, average 
sensitivity value over the entire insertion range.
Once the tuner's orientation and sensitivities are known, the 
algorithm can search for the calibration window vertices using 
the following iterative search procedure:
(New position) = (old position) + (sensitivity)(response error)
where the response error is simply the difference between the 
target magnitude/phase and the current magnitude/phase. The 
iteration continues, alternating between motors, until the 
magnitude and phase response errors are acceptably small. Fig. 1 
illustrates the general tuner path used in locating the 
calibration window vertices. Starting at the zero position, the 
carriage is moved until the first phase target (9i) is found; 
next, the probe is inserted until the first magnitude target (mi) 
is found. At this point, the carriage and probe are alternately 
adjusted until the magnitude/phase errors are acceptably small. 
The procedure is then repeated for the second calibration window 
vertex. Note that if the carriage has a positive orientation 
(Fig. 1(a)), 0i will be closest to the zero position, but if the 
orientation is negative (Fig. 1(b)), ©2 will be closest to the 
zero position.
Fig. 2 is a plot of a 7x7 calibration grid made at 15 Ghz for a 
-20 to 380 degree phase range and a 0.7 to 0.4 magnitude range. 
Note that the tuner's nonlinearities are easily seen in the plot. 
The ripples in the horizontal curves represent magnitude 
variation with carriage movement; the ripples in the vertical 
curves represent phase variation with probe insertion, and the 
unequal spacings between the horizontal curves represent 
variations in the probe's magnitude sensitivity.
Three additional points should also be made relative to the 
tuner's calibration. First, the calibration window should be 
specified to be slightly bigger than the desired window; in other 
words, the window margin should be big enough to compensate for 
the tuner's nonlinearities (a +10* phase and a + 0.05 magnitude 
margin is usually sufficient). Second, the software must convert



the 0 to +180 degree phase measurement of a network analyzer to a 
strictly increasing phase relative to ©i. Third, note that if 
the tuner's electrical length is not greater than twice the 
desired phase range, then it might be necessary to convert the 
phase range to one that is compatible with the tuner's achievable 
phase range, relative to ©q. For example, if a 0-360 degree 
phase range is desired, but the realizable tuner range is 10-400, 
then the desired range should be changed from 0-360 to 10-370. 
This change can be made invisible to the operator, both during 
calibration and during impedance prediction.

Impedance Prediction
The basic concept used by the algorithm to predict tuner 
impedances is to locate the square of the calibration grid that 
bounds the desired impedance and then two-dimensionally 
interpolate within that square to determine the desired motor 
positions. The two-dimensional interpolation algorithm used is a 
custom technique that the author has named pseudo-2D 
interpolation. The general steps used in the procedure are as 
follows:

1) Search calibration grid for the grid square that bounds 
the desired impedance on two intersecting sides.
2) Interpolate/extrapolate along the vertical segments to 
find where the desired magnitude lies along the segments.
3) Interpolate/extrapolate along the horizontal segments to 
find where the desired phase lies along the segments.
4) Derive an equation for the line that connects the
interpolation-derived magnitudes of step 2.
5) Derive an equation for the line that connects the
interpolation-derived phases of step 3.
6) Solve for the desired motor positions by finding the 
intersection of the lines derived in steps 4 and 5.

Fig. 3 is an illustration of the above procedure: the x's
represent carriage position; the y's represent probe position;
the m's represent magnitudes; the 0's represent phase; the 
subscripts 1,2,3 and 4 represent the vertex numbers of a grid 
square, and the subscript "t" represents "target" or desired 
values.
Step l is implemented by systematically searching the calibration 
grid until a square is found where

93 < ©t ^ 04 or 01 < 0t ^ e2and
m3 < ^t < ml or m4 < m-t < ^2

Step 2 is next implemented by interpolating between m^ and m3 to 
find the position of mi3 (=mt) , and by interpolating between m2 
and m4 to find 11124 (=nit) . For instance, the mi3 interpolation is



Y13 = (mt-ms)(yi2-y34)/(mi-m3)
Procedurally, step 3 is identical to step 2; the only difference 
is that phase values and horizontal segments are used in the 
interpolations. Note that step l forces at least one of each of 
the mij and 0 ij determinations to be true interpolations: The 
other two mij»0ij determinations could possibly be 
extrapolations. The likelihood for extrapolations increases as 
the grid density increases, and as the desired impedance nears an 
actual grid point.
Step 4 consists of finding the equation of the line that connects 
mi3 to m24- The resulting equation is

y = (y24-yi3)(X-X13)/(X24-X13) + Y13
The corresponding equation for step 5 (line that connects 912 to 
634) is

y = (yi2-y34)(X-X34)/(X12-X34) + y34
Lastly, the desired motor coordinates (xt,yt) are found by 
finding the common solution or intersection of the above 
equations. This point can be found by simple substitution or by 
matrix techniques, whichever is more convenient/efficient for the 
programmer to implement.
Fig. 4(a) is a plot of an APCS pull performed via the above 
algorithm. (The pull is performed in 5* steps for |r| =0.6 and 
uses the calibration grid illustrated in Fig. 2.) The plot shows 
that the magnitude was held to within 0.01 units of the desired 
pull value. Fig. 4(b) is a plot of the magnitude and phase 
errors at each pull position. This plot shows that the phase 
error ranged from -0.5 to 1.2 degrees. Results for any pull 
within the calibration window produced similar accuracies 
(absolute magnitude error < .01, absolute phase error < 1.2*).
If the accuracy obtained using a given calibration grid is not 
sufficient, the grid density can simply be increased. Selection 
of the appropriate grid density depends on the accuracy desired, 
the size and magnitude range of the calibration window, and on 
the extent of the tuner's nonlinearity. The time required for 
calibration is only a secondary consideration in selecting grid 
density. This is because the automated calibration procedure is 
relatively quick; the 7x7 grid of Fig. 2 took less than 1.5 
minutes to create.
The most accurate tuner response is obtained for reflection 
coefficient magnitudes that are less than 0.75 (the tuner is 
capable of magnitudes up to 0.9). Pull tests for magnitudes 
greater than 0.75 were found to have errors as much as 50% 
greater than those for magnitudes less than 0.75 (for similar 
calibration grid densities). This is primarily because the
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nonlinearity of the tuner's response increases significantly as 
the probe nears full insertion. Additionally, the tuner's 
linearity is a strong function of its opposite-port load. If the 
tuner's load is a poor match, then the tuner's nonlinearity will 
be significantly increased; hence, a denser calibration grid will 
be needed to obtain the same accuracy that would have been 
possible with a more ideal load. The effect of a poor load on 
tuner response can be predicted via the s-parameter equation for 
the reflection coefficient of a two-port network (in this case 
the tuner) connected to an arbitrary load (Tl):

r tuner = Sll + (S2iSi2rL)/(l-S22rL)
If rl is ideal (1^=0), then the tuner's response is its intrinsic 
Sn. However, if Tl is non-ideal, then the tuner's response is a 
function of the load and all the tuner's s-parameters, which in 
turn are functions of the tuner's position. It is easy to see 
how the nonlinear nature of the magnitude and phase solutions of 
the above equation could increase the nonlinearity of the tuner's 
magnitude/phase response.

Conclusion
Perhaps the most significant characteristic of the APCS algorithm 
is its simplicity. Before developing the algorithm, several 
other techniques were attempted. For example, one procedure the 
author attempted was based on performing least-squares paraboloid 
surface fits of the the grid area that bounded the desired 
impedance. This technique yielded errors that were two to three 
times greater than those resulting from the APCS algorithm. 
While some of the other techniques produced acceptable results, 
none were as simple or computationally efficient as the APCS 
algorithm.
Currently, the APCS algorithm is being used in an integrated, 
single-connection tester to perform an all-phase, constant-SWR 
load pull. While the APCS algorithm was designed specifically 
for this task, it is versatile enough to be adaptable to many 
other applications. The key to its versatility is that the 
algorithm essentially allows the tuner to function as a computer- 
controlled impedance. In fact, one application for the algorithm 
would be to use it in conjunction with the manufacturer's 
power/noise contouring software. The manufacturer's software 
could be used to predict the optimum noise/power impedance, and 
the APCS algorithm could be used to position to that impedance 
for a real-world verification test. Hence, the APCS algorithm 
appears to be useful both to enhance existing software and to 
implement unique, custom applications.



carriage position -------------------^ (phase --------- ► )

carriage position -------------------^ (phase <--------- )

(b)

Figure 1. Tuner paths for locating calibration window vertices, 
(a) Positive phase orientation, (b) Negative phase orientation.
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Figure 3. Pseudo-2D interpolation of grid square.
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Figure 4. Tuner implementation of APCS pull. (A)Tuner response. (b)Pull error.


