skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Use of the exergy concept for design improvement of heat exchangers and heat exchanger networks

Miscellaneous ·
OSTI ID:7120965

The second law of thermodynamics, through the exergy concept, allows us to quantify and rationally coat the consumption of exergy (irreversibility) used to drive the heat exchange process and the effluent losses of exergy in a heat exchanger. For systems with a network of heat exchangers, the exergy concept recognizes that properly integrated heat pumps reduce the heat transfer irreversibility; this results in reduced utility consumption. Heat engines properly integrated in heat exchanger networks also recover a fraction of the thermodynamic potential destroyed during the heat transfer process and generate power at very high efficiencies. Heat exchanger design conditions are characterized and potential trade-off options discussed. A modification to the irreversibility minimization method is proposed next, and the proposed method gives more realistic guide posts for heat exchangers, compared to the corresponding guide posts obtained from present methods. This thesis also proposes a method to obtain the irreversibility cost coefficients for heat exchangers residing in complex systems. The application of the modified irreversibility method proposed here, and the thermoeconomic method, are illustrated by optimizing an emerging technology ceramic heat exchanger residing in a complex power plant. A method based on the exergy concept is developed to recognize the potential for improvement of processes with process integrated heat pumps and heat engines. Once potential processes have been identified, economically optimum load and level of integration have to be determined. The method of formulating the economic optimization problem is presented, and bounds for some design variables are finally developed.

Research Organization:
Oregon State Univ., Corvallis, OR (USA)
OSTI ID:
7120965
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English