Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Thermoeconomic analysis of a gasification-combined-cycle power plant. Final report. [Includes 2nd law evaluation of processes]

Technical Report ·
OSTI ID:5205433
This report presents the results of a study conducted to further develop a thermoeconomic (combined thermodynamic and economic) methodology for the analysis and evaluation of power plants, and to apply the procedures of the methodology to an integrated coal gasification-combined-cycle (IGCC) power plant. The design and cost estimates used in the thermoeconomic analysis are based on the results of a recent comprehensive EPRI study conducted by Fluor Engineers, Inc., with participation of Texaco, Inc., and of the General Electric Company. One basic plant configuration was thermoeconomically analyzed. Results of this study indicate that the cost of net electricity could decrease by increasing capital cost to decrease exergy losses in the gas turbine system, and by improving (reducing the capital cost of) the heat-exchanger network of the total process. Addition of a reheat stage in the gas turbine system can improve overall IGCC plant efficiency by more than 2.5 percentage points. The analyses allow identification and evaluation of the real cost sources, and the opportunities for improvement of any energy-conversion process. The detailed thermoeconomic analysis of the base plant is based on the exergy (useful energy) concept, and enables the costing of the exergy streams flowing between plant components, and the exergy losses (real ''energy'' losses) in these components. The higher the exergy losses, the lower the efficiency of the plant component being investigated. The recommendations from the thermoeconomic analysis are based on comparison between (a) costs of fuel and product of each plant component, and (b) capital costs and costs of exergy losses associated with each plant component. The objective is to find an optimum combination of capital expenditures and efficiency for the major components of the power plant. 21 refs., 19 figs., 33 tabs.
Research Organization:
Nevada Univ., Reno (USA). Desert Research Inst.
OSTI ID:
5205433
Report Number(s):
EPRI-AP-4734; ON: TI87920058
Country of Publication:
United States
Language:
English