Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Geochemical mapping of the lunar surface using laser-induced ion mass spectrometry from landers and rovers

Conference ·
OSTI ID:7119865
In-situ lunar geochemical assessment is essential when remotely prospecting for lunar resources or characterizing the mineralogy of a lunar site. We discuss a technique for lunar geochemical mapping from landed platforms using Laser-induced Ion Mass Spectrometry (LIMS). In this technique, a focused diode-pumped Nd:YAG laser on an lunar lander or rover vaporizes a thin layer of a soil or rock target located at a range of 1 to 100 m. The vapor is ionized through electron heating by inverse Bremsstrahlung, and the expanding plasma cloud contains information about the target composition. Ions in this plasma are analyzed using specialized time-of-flight ion mass spectrometry, providing detailed composition analysis of the lunar surface. In considering this technique, we discuss the effects on the ion trajectories of ambient electric and magnetic fields and present a high sensitivity, high mass-resolution mass spectrometer that is capable of detecting low atomic mass abundances, trace elements, and isotopic variations.
Research Organization:
Los Alamos National Lab., NM (United States)
Sponsoring Organization:
DOE; USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-36
OSTI ID:
7119865
Report Number(s):
LA-UR-92-3821; CONF-9211130--1; ON: DE93003849
Country of Publication:
United States
Language:
English