On the critical exponent for random walk intersections
Journal Article
·
· Journal of Statistical Physics; (USA)
- Univ. of Washington, DC (USA)
- Duke Univ., Durham, NC (USA)
The exponent {zeta}{sub d} for the probability of nonintersection of 2 random walks starting at the same point is considered. It is proved that 1/2 < {zeta}{sub 2} {<=} 3/4. Monte Carlo simulations are done to suggest {zeta}{sub 2} = 0.61{hor ellipsis} and {zeta}{sub 3} {approx} 0.29.
- OSTI ID:
- 7102179
- Journal Information:
- Journal of Statistical Physics; (USA), Journal Name: Journal of Statistical Physics; (USA) Vol. 56:1-2; ISSN 0022-4715; ISSN JSTPB
- Country of Publication:
- United States
- Language:
- English
Similar Records
Critical exponents for the self-avoiding random walk in three dimensions
Exponential convergence to equilibrium for a class of random-walk models
The Hausdorff dimension of random walks and the correlation length critical exponent in Euclidean field theory
Journal Article
·
Thu Oct 01 00:00:00 EDT 1987
· J. Stat. Phys.; (United States)
·
OSTI ID:5825956
Exponential convergence to equilibrium for a class of random-walk models
Journal Article
·
Tue Jan 31 23:00:00 EST 1989
· J. Stat. Phys.; (United States)
·
OSTI ID:5626982
The Hausdorff dimension of random walks and the correlation length critical exponent in Euclidean field theory
Journal Article
·
Sun Oct 31 23:00:00 EST 1993
· Journal of Statistical Physics; (United States)
·
OSTI ID:7206864
Related Subjects
657002* -- Theoretical & Mathematical Physics-- Classical & Quantum Mechanics
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
BOUNDARY CONDITIONS
COMPUTERIZED SIMULATION
CONFORMAL INVARIANCE
INVARIANCE PRINCIPLES
MARKOV PROCESS
MATHEMATICAL OPERATORS
MECHANICS
MONTE CARLO METHOD
ONE-DIMENSIONAL CALCULATIONS
PROBABILITY
PROJECTION OPERATORS
RANDOMNESS
SIMULATION
STATISTICAL MECHANICS
STOCHASTIC PROCESSES
THREE-DIMENSIONAL CALCULATIONS
TRAJECTORIES
TRANSPORT THEORY
TWO-DIMENSIONAL CALCULATIONS
71 CLASSICAL AND QUANTUM MECHANICS
GENERAL PHYSICS
BOUNDARY CONDITIONS
COMPUTERIZED SIMULATION
CONFORMAL INVARIANCE
INVARIANCE PRINCIPLES
MARKOV PROCESS
MATHEMATICAL OPERATORS
MECHANICS
MONTE CARLO METHOD
ONE-DIMENSIONAL CALCULATIONS
PROBABILITY
PROJECTION OPERATORS
RANDOMNESS
SIMULATION
STATISTICAL MECHANICS
STOCHASTIC PROCESSES
THREE-DIMENSIONAL CALCULATIONS
TRAJECTORIES
TRANSPORT THEORY
TWO-DIMENSIONAL CALCULATIONS