Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Exponential convergence to equilibrium for a class of random-walk models

Journal Article · · J. Stat. Phys.; (United States)
DOI:https://doi.org/10.1007/BF01019776· OSTI ID:5626982
The authors prove exponential convergence to equilibrium (L/sup 2/ geometric ergodicity) for a random walk with inward drift on a sub-Cayley rooted tree. This random walk model generalizes a Monte Carlo algorithm for the self-avoiding walk proposed by Berretti and Sokal. If the number of vertices of level N in the tree grows as c/sub N/ /approx/ /mu//sup N/N/sup /gamma/minus/1//, they prove that the autocorrelation time /tau/ satisfies /sup 2/ /approx lt/ /tau/ /approx lt/ /sup 1 + /gamma//.
Research Organization:
New York Univ., NY (USA)
OSTI ID:
5626982
Journal Information:
J. Stat. Phys.; (United States), Journal Name: J. Stat. Phys.; (United States) Vol. 54:3-4; ISSN JSTPB
Country of Publication:
United States
Language:
English