skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measurements of cellular structure in spray detonation

Conference ·
OSTI ID:7101873
; ; ;  [1]; ;  [2]
  1. McGill Univ., Montreal, PQ (Canada). Dept. of Mechanical Engineering
  2. Lawrence Livermore National Lab., CA (United States)

The cellular structure of heterogeneous detonations in a low vapor pressure fuel (decane) droplet mixture with oxygen and oxygen-nitrogen was studied in the present investigation. The aerosol was generated by an ultrasonic nebulizer and the fuel concentration of the mixture was regulated by monitoring the volume flow rate of oxygen and nitrogen through the nebulizer. The vertical detonation tube is 64 mm in diameter and 3 m long and ignition was by a powerful spark (120 joules stored energy) or a high explosive detonator. Velocity was measured with ionization probes, pressure by a PCB piezoelectric transducer and cell size by a smoked metallic foil inserted into the top end or centre of the detonation tube. The initial pressure of all the experiments was 1 atmosphere. In order to compare the time scales associated with the physical processes of droplet breakup, heat transfer, evaporation, and mixing, experiments were also carried out in the tube heated to 100{degree}C and 185{degree}C, using electrical heating tape, to ensure a homogeneous gas phase mixture of decane-oxygen-nitrogen. Comparison of the cell size for the same mixture in the cold and the heated tube permits one to separate the time scales associated with the physical processes and the chemical kinetic rate processes. The results from the heated tube for the homogeneous vapor phase decane detonations are similar to those for the common gaseous fuels in the alkane group (i.e. ethane, propane, butane). Corresponding results for the heterogeneous case (cold tube) of aerosol decane detonation indicate that the cell size is larger by a factor of about 2, for the present case of 5 {mu}m particle size. The measurements of cellular structure obtained experimentally have been compared to the computed results determined using the ZND chemical kinetic detonation model.

Research Organization:
Lawrence Livermore National Lab., CA (United States)
Sponsoring Organization:
USDOE; USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
7101873
Report Number(s):
UCRL-JC-108710; CONF-9107160-3; ON: DE92019580
Resource Relation:
Conference: 13. international colloquium on dynamics of explosives and reactive systems, Nagoya (Japan), 28 Jul - 31 Aug 1991
Country of Publication:
United States
Language:
English