Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Vacuum outgassing of artificial dielectric ceramics

Journal Article · · Journal of Vacuum Science and Technology, A (Vacuum, Surfaces and Films); (United States)
DOI:https://doi.org/10.1116/1.579043· OSTI ID:7084510
 [1]
  1. Continuous Electron Beam Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606 (United States)

A special aluminum nitride (AlN)--glassy carbon artificial dielectric ceramic for microwave absorption at low temperature has been developed at the Continuous Electron Beam Accelerator Facility to manufacture the higher order mode (HOM) loads used in the superconducting cavities of the machine. As the HOM loads share the same ultrahigh vacuum as the superconducting cavities, very tight vacuum requirements are imposed on the HOM load's material. Vacuum outgassing rates have been measured and compared for AlN--15% glassy carbon artificial ceramic in fully degassed condition produced by heating to high temperature in a vacuum furnace. In addition, the effect of exposure to air, nitrogen gas, and isopropanol is discussed. A typical outgassing rate at room temperature is 2.5[times]10[sup [minus]11] Torr l/s/cm[sup 2], 24 h after initial pump down. Baking 24 h at 150 [degree]C was sufficient to attain an outgassing rate of less than 4[times]10[sup [minus]12] Torr l/s/cm[sup 2]. However, when the ceramic has a lower bulk density or a higher apparent porosity, the outgassing rates can be two orders of magnitude higher.

DOE Contract Number:
AC05-84ER40150
OSTI ID:
7084510
Journal Information:
Journal of Vacuum Science and Technology, A (Vacuum, Surfaces and Films); (United States), Journal Name: Journal of Vacuum Science and Technology, A (Vacuum, Surfaces and Films); (United States) Vol. 12:4; ISSN 0734-2101; ISSN JVTAD6
Country of Publication:
United States
Language:
English