skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures

Abstract

Most of cadmium (Cd)-treated animals have been reported to show osteoporosis-like changes in bones. This suggests that Cd may promote bone loss by a direct action on bone. It was found that Cd stimulated prostaglandin E{sub 2}(PGE{sub 2}) production in the osteoblast-like cell, MC3T3-E1. Therefore, Cd stimulates bone resorption by increasing PGE{sub 2} production. Recently, several bone marrow cell culture systems have been developed for examining the formation of osteoclast-like multinucleated cells in vitro. As osteoblasts produce PGE{sub 2} by Cd-induced cyclooxygenase and may play an important role in osteoclast formation, the present study was undertaken to clarify the possibility that Cd might stimulate osteoclast formation in a mouse bone marrow culture system.

Authors:
; ; ; ; ; ;  [1]
  1. (Toyama Medical and Pharmaceutical Univ. (Japan))
Publication Date:
OSTI Identifier:
7050072
Resource Type:
Journal Article
Resource Relation:
Journal Name: Bulletin of Environmental Contamination and Toxicology; (United States); Journal Volume: 47:2
Country of Publication:
United States
Language:
English
Subject:
63 RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT.; BONE MARROW CELLS; ETIOLOGY; CADMIUM COMPOUNDS; BIOLOGICAL EFFECTS; OSTEOPOROSIS; CELL PROLIFERATION; METABOLISM; PROSTAGLANDINS; ANIMAL CELLS; CONNECTIVE TISSUE CELLS; DISEASES; SKELETAL DISEASES; SOMATIC CELLS; 560300* - Chemicals Metabolism & Toxicology

Citation Formats

Miyahara, Tatsuro, Takata, Masakazu, Miyata, Masaki, Nagai, Miyuki, Sugure, Akemi, Kozuka, Hiroshi, and Kuze, Shougo. Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures. United States: N. p., 1991. Web. doi:10.1007/BF01688653.
Miyahara, Tatsuro, Takata, Masakazu, Miyata, Masaki, Nagai, Miyuki, Sugure, Akemi, Kozuka, Hiroshi, & Kuze, Shougo. Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures. United States. doi:10.1007/BF01688653.
Miyahara, Tatsuro, Takata, Masakazu, Miyata, Masaki, Nagai, Miyuki, Sugure, Akemi, Kozuka, Hiroshi, and Kuze, Shougo. 1991. "Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures". United States. doi:10.1007/BF01688653.
@article{osti_7050072,
title = {Cadmium stimulates osteoclast-like multinucleated cell formation in mouse bone marrow cell cultures},
author = {Miyahara, Tatsuro and Takata, Masakazu and Miyata, Masaki and Nagai, Miyuki and Sugure, Akemi and Kozuka, Hiroshi and Kuze, Shougo},
abstractNote = {Most of cadmium (Cd)-treated animals have been reported to show osteoporosis-like changes in bones. This suggests that Cd may promote bone loss by a direct action on bone. It was found that Cd stimulated prostaglandin E{sub 2}(PGE{sub 2}) production in the osteoblast-like cell, MC3T3-E1. Therefore, Cd stimulates bone resorption by increasing PGE{sub 2} production. Recently, several bone marrow cell culture systems have been developed for examining the formation of osteoclast-like multinucleated cells in vitro. As osteoblasts produce PGE{sub 2} by Cd-induced cyclooxygenase and may play an important role in osteoclast formation, the present study was undertaken to clarify the possibility that Cd might stimulate osteoclast formation in a mouse bone marrow culture system.},
doi = {10.1007/BF01688653},
journal = {Bulletin of Environmental Contamination and Toxicology; (United States)},
number = ,
volume = 47:2,
place = {United States},
year = 1991,
month = 8
}
  • We report here our initial observations on the growth and morphology, and developmental radiosensitivity of giant, multinucleated, osteoclast-like cells (MN-OS) generated through in vitro cultivation of hematopoietic progenitor-enriched canine bone marrow samples. Maximum cell densities of 5.5 x 10(3) to 6.5 x 10(3) MN-OS per cm2 of growth area were achieved following 10 to 14 days of culture at 37 degrees C. Acute gamma irradiation of the initial marrow inocula resulted in significant, dose-dependent perturbations of MN-OS formation, growth, and development. Attempts to estimate radiosensitivity of MN-OS progenitors from canine marrow yielded a range of Do values from a lowmore » of 212 cGy measured at six days of culture to higher values of 405 to 542 cGy following 10 to 22 days of culture. At the intermediate times of culture (10 to 14 days), the radiation-induced responses were clearly biphasic, reflecting either (a) the presence of multiple subpopulations of MN-OS progenitors with varying degrees of radiosensitivity or (b) the inherent biphasic nature of MN-OS development involving early progenitor cell proliferation followed by maturation and subsequent fusion. Morphologically, MN-OS generated from irradiated marrow inocula appeared only marginally altered, with alterations expressed largely in a biphasic, dose-dependent fashion in terms of smaller cell size, reduced number of nuclei, increased expression of both surface microprojections, and a unique set of crystalloid cytoplasmic inclusions. Functionally, MN-OS appeared to be impaired by irradiation of marrow progenitors, as evidenced by failure to initiate resorptive attachments to devitalized bone spicules in vitro.« less
  • Prostaglandins (PG) act as direct inhibitors of mature osteoclasts, but although resorption-inhibition is also observed initially PG increase bone resorption in organ culture. This suggests that PG influence bone resorption in organ culture through actions on cell types other than mature osteoclasts. We have therefore tested the effects of PG E1, E2, and F2 alpha on the differentiation of osteoclastic phenotype in mouse bone marrow cultures using bone resorption and calcitonin receptors (CTR) as markers of osteoclastic differentiation. We found that PGE2 (10{sup {minus} 6}-10{sup {minus} 9} M) and PGE1 (10{sup {minus} 6} - 10{sup {minus} 7} M) induced amore » significant increase in CTR-positive cell numbers, to levels five to eight times those seen in controls and similar to the number induced by 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3). Bone resorption was increased (10{sup {minus} 7} M PGE2 and 10{sup {minus} 6} M PGE1) in association with the increased CTR-positive cell numbers, suggesting that the PG also induced resorptive function. 1,25-(OH)2D3 increased both the number of CTR-positive cells and the extent of resorption per cell; the additional presence of PG did not affect the number of CTR-positive cells but did reduce bone resorption compared with 1,25-(OH)2D3 alone. PGF2 alpha had no significant effect on CTR-positive cell induction or bone resorption. The results suggest that PGE1 and E2 induce osteoclastic differentiation in mouse bone marrow cultures and inhibit the function of the osteoclasts thus formed.« less
  • The bone marrow-derived mesenchymal stem cells (bmMSCs) have been widely used in cell transplant therapy, and the proliferative ability of bmMSCs is one of the determinants of the therapy efficiency. Lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) as a transmembrane protein is responsible for binding, internalizing and degrading oxidized low density lipoprotein (ox-LDL). It has been identified that LOX-1 is expressed in endothelial cells, vascular smooth muscle cells, cardiomyocytes, fibroblasts and monocytes. In these cells, low concentration of ox-LDL (<40 μg/mL) stimulates their proliferation via LOX-1 activation. However, it is poor understood that whether LOX-1 is expressed in bmMSCs andmore » which role it plays. In this study, we investigated the status of LOX-1 expression in bmMSCs and its function on bmMSC proliferation. Our results showed that primary bmMSCs exhibiting a typical fibroblast-like morphology are positive for CD44 and CD90, but negative for CD34 and CD45. LOX-1 in both mRNA and protein levels is highly expressed in bmMSCs. Meanwhile, bmMSCs exhibit a strong potential to take up ox-LDL. Moreover, LOX-1 expression in bmMSCs is upregulated by ox-LDL with a dose- and time-dependent manner. Presence of ox-LDL also enhances the proliferation of bmMSCs. Knockdown of LOX-1 expression significantly inhibits ox-LDL-induced bmMSC proliferation. These findings indicate that LOX-1 plays a role in bmMSC proliferation. - Highlights: ► LOX-1 expresses in bmMSCs and mediates uptake of ox-LDL. ► Ox-LDL stimulates upregulation of LOX-1 in bmMSCs. ► Ox-LDL promotes bmMSC proliferation and expression of Mdm2, phosphor-Akt, phosphor-ERK1/2 and phosphor-NF-κB. ► LOX-1 siRNA inhibits ox-LDL-induced bmMSC proliferation and expression cell survival signals.« less
  • The multiple myeloma (MM) bone marrow (BM) microenvironment plays a critical role in supporting tumor growth and survival as well as in promoting formation of osteolytic lesions. Recent results suggest that the p38 mitogen-activated protein kinase (MAPK) is an important factor in maintaining this activated environment. In this report, we demonstrate that the p38{alpha} MAPK inhibitor, SCIO-469, suppresses secretion of the tumor-supportive factors IL-6 and VEGF from BM stromal cells (BMSCs) as well as cocultures of BMSCs with MM cells, resulting in reduction in MM cell proliferation. Additionally, we show that SCIO-469 prevents TNF{alpha}-induced adhesion of MM cells to BMSCsmore » through an ICAM-1- and VCAM-1-independent mechanism. Microarray analysis revealed a novel set of TNF{alpha}-induced chemokines in BMSCs that is strongly inhibited by SCIO-469. Furthermore, reintroduction of chemokines CXCL10 and CCL8 to BMSCs overcomes the inhibitory effect of SCIO-469 on TNF{alpha}-induced MM adhesion. Lastly, we show that SCIO-469 inhibits secretion and expression of the osteoclast-activating factors IL-11, RANKL, and MIP-1{alpha} as well as prevents human osteoclast formation in vitro. Collectively, these results suggest that SCIO-469 treatment can suppress factors in the bone marrow microenvironment to inhibit MM cell proliferation and adhesion and also to alleviate osteolytic activation in MM.« less
  • Mouse bone marrow is barely capable of plaque-forming cell (PFC) activity during the primary response to sheep red blood cells (SRBC). However, during the secondary response, it becomes the major center of activity containing IgM-, IgG- and IgA-PFC. In the present paper the influence of splenectomy was studied on primary and secondary PFC activity in the bone marrow. Differences in primary and secondary bone marrow PFC responses are probably related to the presence of B and T memory cells in situ. Therefore the effect of splenectomy on the appearance of B and T memory cells in the bone marrow wasmore » also investigated. iv.plenectomy before intravenous (iv) immunization with 4 x 10/sup 8/ SRBC prevented any primary PFC activity in the bone marrow. The influence of splenectomy before priming on secondary PFC activity in the bone marrow depended on the priming dose of SRBC. Splenectomy before priming with 10/sup 7/ SRBC iv completely prevented IgM-, IgG-, and IgA-PFC activity in the bone marrow upon subsequent boosting with 4 x 10/sup 8/ SRBC iv. By means of cell transfer experiments it was shown that after splenectomy no B or T memory cells appeared in the bone marrow after priming with 10/sup 7/ SRBC iv. Cell transfer experiments showed that splenectomy before priming with 10/sup 7/ SRBC iv not only interfered with the appearance of B and T memory cells in the bone marrow, but also with the appearance of B memory cells in peripheral lymph nodes, mesenteric lymph node, Peyer's patches, thymus, and blood. Immunization of spenectomized mice with 4 x 10/sup 8/ SRBC iv induced the appearance of B memory cells in peripheral lymph nodes, mesenteric lymph node, Peyer's patches, thymus, and blood.« less