Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Inhibition of the voltage-dependent chloride channel of Torpedo electric organ by diisopropylfluorophosphate and its reversal by oximes

Conference · · Fed. Proc., Fed. Am. Soc. Exp. Biol.; (United States)
OSTI ID:7025264

Diisopropylfluorophosphate (DFP), a potent organophosphate inhibitor of cholinesterases, was found to inhibit the specific binding of (/sup 35/S)t-butylbicyclophosphorothionate (TBPS), specific chloride channels ligand, to the electric organ membranes of Torpedo, with a Ki of 21 +/- 3 ..mu..M. The binding sites of (/sup 35/S)TBPS in the Torpedo membranes were found not to be GABA receptors or nicotinic acetylcholine receptors as previously described. Interestingly, a stimulation of the binding of (/sup 35/S)TBPS was observed in the presence of atropine and three oximes, monopyridinium oxime 2-PAM, bispyridinium bis-oxime TMB-4 and H-oxime HI-6. The maximal stimulation was 300-500% of control, after which, the stimulation was reversed at higher concentrations. The three oximes protected by more than 95% the inhibition by 1 mM DFP of the binding of (/sup 35/S)TBPS to the voltage-dependent chloride channel. However, atropine protected only 20% of the inhibited channel. These results, thus, suggest that the protection against the toxic effects of DFP or other anticholinesterase agents by the tested oximes may not be solely a result of the reactivation of cholinesterases but also the protection of the voltage-dependent chloride channel.

Research Organization:
Walter Reed Army Institute of Research, Washington, DC
OSTI ID:
7025264
Report Number(s):
CONF-8606151-
Journal Information:
Fed. Proc., Fed. Am. Soc. Exp. Biol.; (United States), Journal Name: Fed. Proc., Fed. Am. Soc. Exp. Biol.; (United States) Vol. 45:6; ISSN FEPRA
Country of Publication:
United States
Language:
English