skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Oxytocin increases extrapancreatic glucagon secretion and glucose production in pancreatectomized dogs

Abstract

Infusion of oxytocin into normal dogs increases plasma levels of insulin and glucagon and glucose production and uptake. To determine whether infused oxytocin also increases glucagon secretion from extrapancreatic sites, pancreatectomized dogs, off insulin of 18 hr, were infused with oxytocin and plasma glucagon, and glucose production and uptake were measured using the (6-/sup 3/H)glucose primer-infusion technique. The diabetic dogs, in the control period, had elevated plasma glucose and glucagon levels, an increased rate of glucose production, and a relative decrease in glucose uptake (decreased clearance). Infusion of oxytocin (500 ..mu..U/kg/min) caused a rise in plasma glucagon and glucose levels, increased glucose production, and further decreased glucose clearance. it is concluded that oxytocin can stimulate secretion of extrapancreatic glucagon, which contributes to the increased glucose production.

Authors:
; ; ; ;
Publication Date:
Research Org.:
New York Univ. School of Medicine, NY
OSTI Identifier:
7025192
Resource Type:
Journal Article
Resource Relation:
Journal Name: Proc. Soc. Exp. Biol. Med.; (United States); Journal Volume: 182:1
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; GLUCAGON; BIOCHEMICAL REACTION KINETICS; RADIOIMMUNOASSAY; GLUCOSE; BIOSYNTHESIS; OXYTOCIN; BIOLOGICAL EFFECTS; DIABETES MELLITUS; DOGS; TRACER TECHNIQUES; TRITIUM COMPOUNDS; ALDEHYDES; ANIMALS; CARBOHYDRATES; DISEASES; ENDOCRINE DISEASES; HEXOSES; HORMONES; IMMUNOASSAY; IMMUNOLOGY; ISOTOPE APPLICATIONS; KINETICS; LABELLED COMPOUNDS; MAMMALS; METABOLIC DISEASES; MONOSACCHARIDES; ORGANIC COMPOUNDS; PEPTIDE HORMONES; PEPTIDES; PITUITARY HORMONES; POLYPEPTIDES; PROTEINS; RADIOASSAY; RADIOIMMUNOLOGY; REACTION KINETICS; SACCHARIDES; SYNTHESIS; VERTEBRATES; 550201* - Biochemistry- Tracer Techniques

Citation Formats

Altszuler, N., Puma, F., Winkler, B., Fontan, N., and Saudek, C.D.. Oxytocin increases extrapancreatic glucagon secretion and glucose production in pancreatectomized dogs. United States: N. p., 1986. Web. doi:10.3181/00379727-182-42312.
Altszuler, N., Puma, F., Winkler, B., Fontan, N., & Saudek, C.D.. Oxytocin increases extrapancreatic glucagon secretion and glucose production in pancreatectomized dogs. United States. doi:10.3181/00379727-182-42312.
Altszuler, N., Puma, F., Winkler, B., Fontan, N., and Saudek, C.D.. Thu . "Oxytocin increases extrapancreatic glucagon secretion and glucose production in pancreatectomized dogs". United States. doi:10.3181/00379727-182-42312.
@article{osti_7025192,
title = {Oxytocin increases extrapancreatic glucagon secretion and glucose production in pancreatectomized dogs},
author = {Altszuler, N. and Puma, F. and Winkler, B. and Fontan, N. and Saudek, C.D.},
abstractNote = {Infusion of oxytocin into normal dogs increases plasma levels of insulin and glucagon and glucose production and uptake. To determine whether infused oxytocin also increases glucagon secretion from extrapancreatic sites, pancreatectomized dogs, off insulin of 18 hr, were infused with oxytocin and plasma glucagon, and glucose production and uptake were measured using the (6-/sup 3/H)glucose primer-infusion technique. The diabetic dogs, in the control period, had elevated plasma glucose and glucagon levels, an increased rate of glucose production, and a relative decrease in glucose uptake (decreased clearance). Infusion of oxytocin (500 ..mu..U/kg/min) caused a rise in plasma glucagon and glucose levels, increased glucose production, and further decreased glucose clearance. it is concluded that oxytocin can stimulate secretion of extrapancreatic glucagon, which contributes to the increased glucose production.},
doi = {10.3181/00379727-182-42312},
journal = {Proc. Soc. Exp. Biol. Med.; (United States)},
number = ,
volume = 182:1,
place = {United States},
year = {Thu May 01 00:00:00 EDT 1986},
month = {Thu May 01 00:00:00 EDT 1986}
}
  • We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with (2-3H)glucose and HGP with (6-3H)glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). (2-3H)- minus (6-3H)glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs.more » 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP.« less
  • The roles of oxytocin (OT) and vasopressin (AVP) on both basal and estrogen-induced prolactin (PRL) secretion were examined. Adult female Sprague-Dawley rats that were ovariectomized for 3 weeks and received estrogen treatment for 1 week were used. Intravenous administration of hormones and serial blood sampling were accomplished through indwelling intraatrial catheters which were implanted two days before. Plasma PRL levels were measured by radioimmunoassay. Oxytocin at a dose of 20 {mu}g/rat stimulated a moderate PRL release in the morning and lower doses were without effect. Vasopressin was most effective at a dose of 5 {mu}g/rat in stimulating PRL release, whilemore » consecutive injections of higher doses were less effective. In contrast, TRH, ranging from 1 to 8 {mu}g/rat, induced a dose-dependent increases in PRL secretion. Using the effective dosages determined from the morning studies, repeated injections of either OT, AVP or their specific antagonists MPOMeOVT were given hourly between 1300 to 1800h and blood samples were obtained hourly from 1100 to 1900h. It was found that either OT or AVP significantly reduced the afternoon PRL surge, while their antagonists were not as effective.« less
  • Chloro-organic compounds are persistent environmental pollutants and affect many reproductive processes. Oxytocin (OT) synthesized in luteal cells is a local regulator of ovarian activity and uterine contractions. Therefore the effect of xenobiotics on the OT prohormone synthesis, secretion of OT and progesterone (P4) from luteal cells and on myometrial contractions during early pregnancy in cows was investigated. Luteal cells and myometrial strips from a cow at early pregnancy were treated with polychlorinated biphenyl 77 (PCB 77), dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE) and hexachlorocyclohexane (HCH) (1 or 10 ng/ml). The mRNA expression of neurophysin-I/oxytocin (NP-I/OT) and peptidyl-glycine-{alpha}-amidating mono-oxygenase (PGA) and concentration ofmore » OT and P4 were determined by RT-PCR and EIA, respectively. Moreover, the effect of xenobiotics given with P4 (12 ng/ml) on the basal and OT (10{sup -7} M) stimulated contractions of myometrial strips was studied. Xenobiotics increased (P < 0.05) OT secretion but DDE only stimulated P4 secretion. The ratio of P4 to OT in culture medium was decreased by all xenobiotics during 9-12 weeks of pregnancy. All xenobiotics, except HCH, increased (P < 0.05) mRNA expression of NP-I/OT during all stages of pregnancy and all treatments decreased (P < 0.05) expression of mRNA for PGA during 9-12 weeks of pregnancy. Myometrial strips were relaxed (P < 0.01) after pre-incubation with P4, while each of the xenobiotics jointly with P4 increased (P < 0.01) myometrial contractions. In conclusion, the xenobiotics used increased both expression of mRNA for genes involved in OT synthesis and secretion of OT from luteal cells. This decreases the ratio of P4 to OT and presumably, in this manner, the chloro-organic compounds can influence uterine contractions and enhance risk of abortions in pregnant females.« less
  • In this study the authors have characterized the effects of cysteamine (CHS) on the cellular content and release of immunoreactive somatostatin (S-14 LI), insulin (IRI), and glucagon (IRG) from monolayer cultures of neonatal rat islets. Incubation of cultures with 0.1-10 mM CHS for 1 h led to an apparent, dose-dependent reduction of cellular S-14 LI that was 50% of control at 0.3 mM, 87% at 1 mM, and 95% at 10 mM. IRI content was unaffected by CHS up to 1 mM, but at 10 mM 90% loss of IRI occurred. All concentrations were without effect on IRG content. Themore » loss of S-14 LI and IRI was completely reversible with time, but with different recovery rates for the two hormones. Cultures rendered S-14 LI deficient with both CHS and anti-S-14 LI exhibited threefold and 2.3-fold potentiation of IRG and IRI secretions, respectively, greater than that expected from the separate effects of the two agents. Increasing medium glucose from 2.8 mM to 16.7 mM stimulated IRI release by 86% and suppressed IRG by 53%. These results suggest that CHS induces an apparent loss of islet S-14 LI, and at high doses, of IRI as well, but has no effect on A cells. Complete islet S-14 LI deficiency augments IRI and IRG secretion over a wide range of glucose concentrations, suggesting a physiological role of D cells on B cell and A cell regulation.« less