skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A systematic analysis of the spectra of the lanthanides doped into single crystal LaF/sub 3/

Technical Report ·
DOI:https://doi.org/10.2172/6995771· OSTI ID:6995771

The optical spectra of the lanthanides doped into single crystal LaF/sub 3/ have been interpreted in terms of transitions within 4f/sup N/ configurations. Energy-level calculations were based on a simultaneous diagonalization of the free-ion and crystal-field matrices using an approximate model with C/sub 2v/ site symmetry instead of the actual C/sub 2/ symmetry. Excellent correlations between experimental transition energies and the computed level structures were obtained; predicted levels are given for Pm/sup 3 +/. Previously unpublished experimental results for Nd/sup 3 +/ and Sm/sup 3 +/:LaF/sub 3/ are included in the tabulations. The spectroscopic data for each ion were analyzed independently, then the parameters of the effective-operator model were intercompared and systematic trends were identified. Since many of the 4f/sup N/ configurations extend well into the vacuum ultraviolet region, and thus beyond any presently available experimental observations, some of the free-ion (atomic) parameters were found to be only approximately defined by the accessible levels. However, the crystal-field parameters seem for the most part to be well established by fits to data at low energies. A new chart of the lanthanide ion 4f/sup N/ configuration energy level structures is presented. It was generated by including all of the computed crystal-field levels in the 0-50000 cm/sup -1/ range. In most cases, experimental analyses of individual ions extended to /approximately/40000 cm/sup /minus/1/. 94 refs., 23 figs., 10 tabs.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
6995771
Report Number(s):
ANL-88-8; ON: DE88016317
Resource Relation:
Other Information: Portions of this document are illegible in microfiche products
Country of Publication:
United States
Language:
English