

Distribution Category: Atomic,  
Molecular and Chemical Physics  
(UC-411)

## DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

---

ANL-88-8

---

ARGONNE NATIONAL LABORATORY  
9700 South Cass Avenue  
Argonne, Illinois 60439

A SYSTEMATIC ANALYSIS OF THE SPECTRA OF THE  
LANTHANIDES DOPED INTO SINGLE CRYSTAL  $\text{LaF}_3$

by

W. T. Carnall, G. L. Goodman, K. Rajnak, \* and R. S. Rana \*\*

Chemistry Division

ANL--88-8

DE88 016317

February 1988

Work performed under the auspices of the Office of Basic Energy Sciences,  
Division of Chemical Sciences, U. S. Department of Energy, under Contract  
W-31-109-Eng-38.

\*Physics Department, Kalamazoo College, Kalamazoo, MI 49007

\*\*Physics Department, College of the Holy Cross, Worcester, MA 01610

MASTER

28  
RECORDED IN THIS MEDIUM IS UNLAWFUL

TABLE OF CONTENTS

|                                                                   | <u>Page</u> |
|-------------------------------------------------------------------|-------------|
| ABSTRACT.....                                                     | 1           |
| 1.0 INTRODUCTION.....                                             | 1           |
| 2.0 EXPERIMENTAL.....                                             | 5           |
| 3.0 THE FREE-ION AND CRYSTAL FIELD HAMILTONIAN.....               | 6           |
| 4.0 ANALYSIS OF EXPERIMENTAL DATA.....                            | 12          |
| 5.0 SUMMARY OF EXPERIMENTAL RESULTS AND THEIR INTERPRETATION..... | 16          |
| 5.1 Ce <sup>3+</sup> :LaF <sub>3</sub> (4f1).....                 | 16          |
| 5.2 Pr <sup>3+</sup> :LaF <sub>3</sub> (4f2).....                 | 17          |
| 5.3 Nd <sup>3+</sup> :LaF <sub>3</sub> (4f3).....                 | 25          |
| 5.4 Pm <sup>3+</sup> :LaF <sub>3</sub> (4f4).....                 | 26          |
| 5.5 Sm <sup>3+</sup> :LaF <sub>3</sub> (4f5).....                 | 26          |
| 5.6 Eu <sup>3+</sup> :LaF <sub>3</sub> (4f6).....                 | 27          |
| 5.7 Er <sup>3+</sup> :LaF <sub>3</sub> (4f11).....                | 30          |
| 5.8 Tm <sup>3+</sup> :LaF <sub>3</sub> (4f12).....                | 32          |
| 5.9 Ho <sup>3+</sup> :LaF <sub>3</sub> (4f10).....                | 41          |
| 5.10 Dy <sup>3+</sup> :LaF <sub>3</sub> (4f9).....                | 44          |
| 5.11 Tb <sup>3+</sup> :LaF <sub>3</sub> (4f8).....                | 45          |
| 5.12 Gd <sup>3+</sup> :LaF <sub>3</sub> (4f7).....                | 46          |
| 5.13 Yb <sup>3+</sup> :LaF <sub>3</sub> (4f13).....               | 48          |
| 6.0 SYSTEMATIC TRENDS.....                                        | 49          |
| 6.1 Atomic (free-ion) Parametrization.....                        | 50          |
| 6.2 Crystal-field Parametrization.....                            | 59          |
| 7.0 CONCLUSIONS.....                                              | 69          |
| 8.0 ACKNOWLEDGMENTS.....                                          | 71          |
| 9.0 REFERENCES.....                                               | 72          |
| 10.0 APPENDICES.....                                              | 77          |

## LIST OF FIGURES

| <u>No.</u> |                                                                                                                                                                                                                                                                                                                                                                                | <u>Page</u> |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.         | Comparison of the Experimental Absorption Spectrum of $\text{Pr}^{3+}:\text{LaF}_3$ with the Model Energy Level Calculation in the Range $4200\text{--}4900\text{ cm}^{-1}$ (the $^3\text{H}_6$ State) at $\sim 4\text{ K}$ .....                                                                                                                                              | 20          |
| 2.         | Comparison of the Experimental Absorption Spectrum of $\text{Pr}^{3+}:\text{LaF}_3$ with the Model Energy Level Calculation and with Previous Proposed Interpretations (A. Assignments of Ref. 48, B. Assignments of Ref. 45) of the Energy Level Structure in the Range $16800\text{--}17400\text{ cm}^{-1}$ (the $^1\text{D}_2$ State) at $\sim 4\text{ K}$ .....            | 23          |
| 3.         | Comparison of the Experimental Absorption Spectrum of $\text{Pr}^{3+}:\text{LaF}_3$ with the Model Energy Level Calculation and with a Previous Proposed Interpretation (A. Assignments of Ref. 45) of the Energy Level Structure in the Range $20800\text{--}22000\text{ cm}^{-1}$ (the $^3\text{P}_0$ , $^1\text{I}_6$ and $^3\text{P}_1$ States) at $\sim 4\text{ K}$ ..... | 24          |
| 4.         | Comparison of the Experimental Absorption Spectrum of $\text{Pr}^{3+}:\text{LaF}_3$ with the Model Energy Level Calculation in the Range $22600\text{--}22900\text{ cm}^{-1}$ (the $^3\text{P}_2$ State) at $\sim 4\text{ K}$ .....                                                                                                                                            | 25          |
| 5.         | Comparison of the Experimental Absorption Spectrum of $\text{Tm}^{3+}:\text{LaF}_3$ with the Model Energy Level Calculation in the Range $5600\text{--}6000\text{ cm}^{-1}$ (the $^3\text{F}_4$ State) at $\sim 4\text{ K}$ .....                                                                                                                                              | 33          |
| 6.         | Comparison of the Experimental Absorption Spectrum of $\text{Tm}^{3+}:\text{LaF}_3$ with the Model Energy Level Calculation in the Range $8200\text{--}8600\text{ cm}^{-1}$ (the $^3\text{H}_5$ State) at $\sim 4\text{ K}$ .....                                                                                                                                              | 34          |
| 7.         | Comparison of the Experimental Absorption Spectrum of $\text{Tm}^{3+}:\text{LaF}_3$ with the Model Energy Level Calculation in the Range $12500\text{--}12900\text{ cm}^{-1}$ (the $^3\text{H}_4$ State) at $\sim 4\text{ K}$ .....                                                                                                                                            | 35          |

LIST OF FIGURES

| <u>No.</u> |                                                                                                                                                                                                                                  | <u>Page</u> |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 8.         | Comparison of the Experimental Absorption Spectrum of $Tm^{3+}:LaF_3$ with the Model Energy Level Calculation in the Range $14300-14700 \text{ cm}^{-1}$ (the $^3F_3$ State) at $\sim 4 \text{ K}$ .....                         | 36          |
| 9.         | Comparison of the Experimental Absorption Spectrum of $Tm^{3+}:LaF_3$ with the Model Energy Level Calculation in the Range $15100-15300 \text{ cm}^{-1}$ (the $^3F_2$ State) at $\sim 4 \text{ K}$ .....                         | 37          |
| 10.        | Comparison of the Experimental Absorption Spectrum of $Tm^{3+}:LaF_3$ with the Model Energy Level Calculation in the Range $28000-28200 \text{ cm}^{-1}$ (the $^1D_2$ State) at $\sim 4 \text{ K}$ .....                         | 38          |
| 11.        | Comparison of the Experimental Absorption Spectrum of $Tm^{3+}:LaF_3$ with the Model Energy Level Calculation in the Range $34500-37000 \text{ cm}^{-1}$ (the $^1I_6$ , $^3P_6$ , and $^3P_1$ States) at $\sim 4 \text{ K}$ .... | 39          |
| 12.        | Comparison of the Experimental Absorption Spectrum of $Tm^{3+}:LaF_3$ with the Model Energy Level Calculation in the Range $38200-38600 \text{ cm}^{-1}$ (the $^3P_2$ State) at $\sim 4 \text{ K}$ .....                         | 40          |
| 13.        | Comparison of the Experimentally Observed and Model Computed Crystal-field Levels for the $^5I_7$ State of $Ho^{3+}:LaF_3$ : (a) From Ref. 62, Table III, (b) Computed levels from Appen. VIII.....                              | 43          |
| 14.        | Absorption Spectrum of $Ho^{3+}:LaF_3$ at $\sim 4 \text{ K}$ in the Range $1880-1930 \text{ nm}$ .....                                                                                                                           | 44          |
| 15.        | Variation of the Parameters $F^2$ , $F^4$ , $F^6$ , and Zeta (in $\text{cm}^{-1}$ ) for both $Ln^{3+}:LaF_3$ and $Ln^{3+}:LaCl_3$ as a Function of the Number of f-electrons (N).....                                            | 51          |

LIST OF FIGURES

| <u>No.</u>                                                                                                                                                                                                                                                  | <u>Page</u> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 16. Variation of the Energy Difference, $\Delta E = E(\text{HFR}) - E(\text{EXPT})$ , between the HFR Computed Energy and That Determined from Experimental Data as a Function of Number of f-electrons (N) for $E=F^2$ , $F^4$ , $F^6$ , and $\zeta$ ..... | 52          |
| 17. Variation of the Parameters $\alpha$ , $\beta$ , and $\gamma$ ( $\text{cm}^{-1}$ ) for $\text{Ln}^{3+}:\text{LaF}_3$ and $\text{Ln}^{3+}:\text{LaCl}_3$ as a Function of Number of f-electrons (N).....                                                 | 56          |
| 18. Variation of the Crystal-field Parameters $B_0^2$ , $B_0^4$ , and $B_0^6$ (in $\text{cm}^{-1}$ ) for $\text{Ln}^{3+}:\text{LaF}_3$ as a Function of Number of f-electrons (N).....                                                                      | 62          |
| 19. Variation of the Crystal-field Parameters $B_2^2$ , $B_2^4$ , and $B_4^4$ (in $\text{cm}^{-1}$ ) for $\text{Ln}^{3+}:\text{LaF}_3$ as a Function of Number of f-electrons (N).....                                                                      | 63          |
| 20. Variation of the Crystal-field Parameters $B_2^6$ , $B_4^6$ , and $B_6^6$ (in $\text{cm}^{-1}$ ) for $\text{Ln}^{3+}:\text{LaF}_3$ as a Function of Number of f-electrons (N).....                                                                      | 64          |
| 21. Variation of the Crystal-field Parameters $B_0^2$ , $B_0^4$ , $B_0^6$ , and $B_6^6$ (in $\text{cm}^{-1}$ ) for $\text{Ln}^{3+}:\text{LaCl}_3$ as a Function of Number of f-electrons (N) (Ref. 10).....                                                 | 66          |
| 22. Variation of the Crystal-field Parameters $B_0^4$ , and $B_0^6$ (in $\text{cm}^{-1}$ ) for $\text{Cs}_2\text{NaLnCl}_6$ as a Function of Number of f-electrons (N) (Ref. 87).....                                                                       | 67          |
| 23. Energy Level Structure of $\text{Ln}^{3+}:\text{LaF}_3$ Based on Computed Crystal-field Energies in the Range $0-50000 \text{ cm}^{-1}$ .....                                                                                                           | 70          |

LIST OF TABLES

| <u>No.</u>                                                                                                                                                                                                              | <u>Page</u> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1. Elements of the Parametric Hamiltonian.....                                                                                                                                                                          | 10          |
| 2. Crystal-field Parameter Values (in terms of $B_q^{(k)}$ in $\text{cm}^{-1}$ ) for $\text{Nd}^{3+}:\text{LaF}_3$ Obtained from Lattice Sum Calculations Compared to Fit Values in $C_2$ and $C_{2v}$ -Symmetries..... | 14          |
| 3. Experimental and Computed Energy Level Structure of $\text{Ce}^{3+}:\text{LaF}_3$ .....                                                                                                                              | 18          |
| 4. Energy Level Parameters of $\text{Ln}^{3+}:\text{LaF}_3$ (in $\text{cm}^{-1}$ ).....                                                                                                                                 | 19          |
| 5. Emissions from the $^1S_0$ State of $\text{Pr}^{3+}:\text{LaF}_3$ (Ref. 49).....                                                                                                                                     | 22          |
| 6. Character Table for Each of the Four Symmetry Species of the $C_{2v}$ Point Group.....                                                                                                                               | 29          |
| 7. Experimental and Computed Energy Level Structure of $\text{Yb}^{3+}:\text{LaF}_3$ .....                                                                                                                              | 49          |
| 8. Energy Level Parameters for $\text{Ln}^{3+}:\text{LaCl}_3$ (in $\text{cm}^{-1}$ ).....                                                                                                                               | 53          |
| 9. HFR Integrals for $\text{Ln}$ IV (in $\text{cm}^{-1}$ ).....                                                                                                                                                         | 54          |
| 10. Orthogonalized Energy Level Parameters for $\text{Ln}^{3+}:\text{LaF}_3$ (in $\text{cm}^{-1}$ )....                                                                                                                 | 58          |
| 11. Free-ion Energy Levels and Parameters for $\text{Pr}$ III ( $4f^3$ ).....                                                                                                                                           | 60          |

## LIST OF APPENDICES

| <u>No.</u>                                                                                            | <u>Page</u> |
|-------------------------------------------------------------------------------------------------------|-------------|
| APP. I. Experimental and Computed Energy Level Structure<br>of $\text{Pr}^{3+}:\text{LaF}_3$ .....    | 77          |
| APP. II. Experimental and Computed Energy Level Structure<br>of $\text{Nd}^{3+}:\text{LaF}_3$ .....   | 81          |
| APP. III. Computed Energy Level Structure for $\text{Pm}^{3+}:\text{LaF}_3$ .....                     | 88          |
| APP. IV. Experimental and Computed Energy Level Structure<br>of $\text{Sm}^{3+}:\text{LaF}_3$ .....   | 92          |
| APP. V. Experimental and Computed Energy Level Structure<br>of $\text{Eu}^{3+}:\text{LaF}_3$ .....    | 102         |
| APP. VI. Experimental and Computed Energy Level Structure<br>of $\text{Er}^{3+}:\text{LaF}_3$ .....   | 107         |
| APP. VII. Experimental and Computed Energy Level Structure<br>of $\text{Tm}^{3+}:\text{LaF}_3$ .....  | 111         |
| APP. VIII. Experimental and Computed Energy Level Structure<br>of $\text{Ho}^{3+}:\text{LaF}_3$ ..... | 115         |
| APP. IX. Experimental and Computed Energy Level Structure<br>of $\text{Dy}^{3+}:\text{LaF}_3$ .....   | 123         |
| APP. X. Experimental and Computed Energy Level Structure<br>of $\text{Tb}^{3+}:\text{LaF}_3$ .....    | 135         |
| APP. XI. Experimental and Computed Energy Level Structure<br>of $\text{Gd}^{3+}:\text{LaF}_3$ .....   | 142         |

A SYSTEMATIC ANALYSIS OF THE SPECTRA OF THE LANTHANIDES  
DOPED INTO SINGLE CRYSTAL  $\text{LaF}_3$

W. T. Carnall, G. L. Goodman, K. Rajnak,  
and R. S. Rana

ABSTRACT

The optical spectra of the lanthanides doped into single crystal  $\text{LaF}_3$  have been interpreted in terms of transitions within  $4f^N$  configurations. Energy-level calculations were based on a simultaneous diagonalization of the free-ion and crystal-field matrices using an approximate model with  $C_{2v}$  site symmetry instead of the actual  $C_2$  symmetry. Excellent correlations between experimental transition energies and the computed level structures were obtained; predicted levels are given for  $\text{Pm}^{3+}$ . Previously unpublished experimental results for  $\text{Nd}^{3+}$  and  $\text{Sm}^{3+}:\text{LaF}_3$  are included in the tabulations. The spectroscopic data for each ion were analyzed independently, then the parameters of the effective-operator model were intercompared and systematic trends were identified.

Since many of the  $4f^N$  configurations extend well into the vacuum ultraviolet region, and thus beyond any presently available experimental observations, some of the free-ion (atomic) parameters were found to be only approximately defined by the accessible levels. However, the crystal-field parameters seem for the most part to be well established by fits to data at low energies.

A new chart of the lanthanide ion  $4f^N$  configuration energy level structures is presented. It was generated by including all of the computed crystal-field levels in the  $0-50000 \text{ cm}^{-1}$  range. In most cases, experimental analyses of individual ions extended to  $\sim 40000 \text{ cm}^{-1}$ .

1.0. INTRODUCTION

The low-temperature absorption and luminescence spectra of trivalent lanthanide ions,  $\text{Ln}^{3+}$ , doped into single crystal  $\text{LaF}_3$ ,  $\text{Ln}^{3+}:\text{LaF}_3$ , in the range  $0-50000 \text{ cm}^{-1}$  reveal a narrow band structure characteristic of transi-

tions between states within the  $4f^N$  configuration. These transitions are interpreted as connecting the ground state to upper-state energy levels, and their energies are used to define the parameters of an effective Hamiltonian which reproduces the complete structure of the crystal-field split  $4f^N$  configuration. Parameters associated with the effective interactions, derived independently from the spectrum of each individual lanthanide ion, show a systematic variation across the lanthanide series. As expected, the effective free-ion interactions in  $\text{LaF}_3$  are depressed relative to those derived from the atomic (free-ion) spectra, and this may be taken as evidence for ligand contributions to optically active orbitals.

Earlier experimental work with lanthanides doped into various crystal lattices, particularly the  $\text{LaCl}_3$  lattice, as well as the basic theory of the atomic and crystal-field interactions was reviewed by Dieke.<sup>1</sup> Subsequent discussions of the theory have been given by Judd,<sup>2</sup> Wybourne,<sup>3</sup> and Hünfner.<sup>4</sup> A recent important addition to this literature, including the summary of a considerable volume of experimental data, was compiled by Morrison and Leavitt.<sup>5</sup>

Extensive spectroscopic data for  $\text{Ln}^{3+}:\text{LaF}_3$  were published at a time when crystal-field calculations for low site-symmetries were rare. Since the site symmetry in  $\text{LaF}_3$  was known to be low,  $C_{2v}$  or  $C_2$ , no attempt was made to address theoretical interpretation of the crystal-field structure itself. Typically, some average energy or center of gravity over a group of levels apparently belonging to a particular  $J$  state, was taken as the free-ion energy of the state. Crystal-host-dependent "free-ion" parameters were then derived via a process of least-squares fitting to the energy level structure established by these states. The theoretical models that were used varied considerably in their sophistication, and there was little evidence upon which to differentiate electronic from vibronic transitions in the assignment of crystal-field levels except relative intensity. There were, of course, limits, imposed by the  $J$  values, on the number of possible components. Polarization and Zeeman-effect data provided an independent means of assigning crystal-field states in  $\text{Ln}^{3+}:\text{LaCl}_3$  spectra,<sup>1</sup> but in  $\text{LaF}_3$  attempts to interpret polarization measurements have met with very limited success.<sup>6,7</sup>

The site symmetry of  $\text{La}^{3+}$  in  $\text{LaF}_3$  is  $C_2$ ,<sup>8</sup> but it can be approximated either as  $C_{2v}$  or as  $D_{3h}$ . This fact apparently led to some confusion in early crystallographic work, and it also influenced the first crystal-field analyses. Onopko<sup>9</sup> was the first to publish crystal-field parameters for  $\text{Nd}^{3+}:\text{LaF}_3$  and  $\text{Er}^{3+}:\text{LaF}_3$  in  $D_{3h}$  symmetry which we found could yield calculated sets of energy levels for any free-ion  $J$  state in those ions consistent with the observed splitting pattern of the state. Parameter fitting based on Onopko's results provided the basis for classification of a considerable amount of data for systems with odd  $N$ .<sup>10,11</sup> For all  $f^N$  configurations with odd  $N$  the maximum number of crystal-field components in a state with quantum number  $J$  is  $J + 1/2$  in any symmetry lower than cubic. However, when  $N$  is even, a lower symmetry than  $D_{3h}$  must be used in crystal-field calculations to completely remove the symmetry-related degeneracy of each state.

Morrison and Leavitt<sup>12</sup> reported parametrized crystal-field calculations in the actual  $C_2$  symmetry based on a limited number of states in each  $4f^N$  configuration in  $\text{LaF}_3$ , but did not examine in detail the behavior of the free-ion operators. Initial (trial) crystal-field parameter values were computed from lattice sums. However, no attempt was made to re-examine the original data in the light of the calculated results.

We have used a  $C_{2v}$  crystal-field following the general approach outlined in Ref. 12, re-evaluating the original assignments in our own work and that of others. A  $C_{2v}$  symmetry removes all the symmetry-imposed degeneracy in even  $N$  systems, and is more tractable than  $C_2$  symmetry for computational purposes. Thus the intent of the project reported here was to use a well-tested theoretical model to interpret a large body of experimental data, to highlight systematic trends, and to provide a basis for prediction of the energies of transitions not observed or beyond the normal optical range.

The approach used in our analysis of the spectra of  $\text{Ln}^{3+}:\text{LaF}_3$  began with modeling the spectra of  $\text{Nd}^{3+}:\text{LaF}_3$  and  $\text{Er}^{3+}:\text{LaF}_3$  in  $D_{3h}$  site symmetry. Both spectra are characterized by numerous groups of absorption bands that are somewhat isolated in energy. In many groups the number of intense bands corresponded to the number expected for the predicted  $J$ -manifold, and

in each case the energy range of observation extended to  $\sim 50000 \text{ cm}^{-1}$ , which encompassed nearly the entire configuration.<sup>11</sup> Excellent correlation of calculated energy levels with observed absorption bands was obtained for both  $\text{Nd}^{3+}$  and  $\text{Er}^{3+}$ . The fitting process was then repeated in the  $C_{2v}$  approximation. While, as expected, the overall degree of correlation between theory and experiment did not improve, the magnitude of each of the crystal-field parameters in the  $C_{2v}$  set was statistically determined even though there are 9 crystal-field parameters for  $C_{2v}$  symmetry as contrasted to only 4 for  $D_{3h}$ . We proceeded by using the  $C_{2v}$  parameter sets for  $\text{Nd}^{3+}$  and  $\text{Er}^{3+}:\text{LaF}_3$  as models to begin the interpretation of the spectra of adjacent ions with even number of f electrons. Since crystal-field parameters in  $\text{Ln}^{3+}:\text{LaCl}_3$  exhibit only moderate variation over the series,<sup>1</sup> the parameters for one ion serve as a reasonable approximation of these for nearest neighbor ions. Thus the crystal-field deduced for  $\text{Er}^{3+}:\text{LaF}_3$  should serve as a reasonable approximation for that in both  $\text{Ho}^{3+}:\text{LaF}_3$  and  $\text{Tm}^{3+}:\text{LaF}_3$ .

The use of the above principle has now led to consistent analyses of experimental  $f^+f$  spectra for all  $\text{Ln}^{3+}:\text{LaF}_3$  except  $\text{Pm}^{3+}:\text{LaF}_3$ . Progress reports in the analysis aspect of this investigation are given in Ref. 13-16. In each case, the experimental data were reexamined and corrections made where necessary. In some cases the complete experimental data included here have not previously been published.

As the host crystal used in this investigation,  $\text{LaF}_3$  has several advantages. It is optically transparent over a wide spectral range extending well into the vacuum ultraviolet. Our experimental techniques only access the region  $0-50000 \text{ cm}^{-1}$ . It is chemically inert, so crystals, which are commercially available,<sup>17</sup> can be handled in air. The ionic character of the lattice appears to offer a good approximation to true free-ion interactions, and a useful basis for comparison with spectra in other crystalline environments.

Since intense photon light sources providing a wide range of energy in the vacuum ultraviolet are being planned, we can expect greater accessibility and interest in the energy level structure of the lanthanides in this range. Some results are already available.<sup>18</sup> At higher energies, it should be possible to examine in greater detail the influence of other configurations on the states of the  $f^N$  configuration. The present study

provides a set of predictions of the expected structure based entirely on information available in the optical range. Interest in both two-photon and multiphoton excitation is increasing, and such studies should also benefit from predictions that can be made using the present energy level systematics.

## 2.0. EXPERIMENTAL

Extensive spectra for most lanthanides doped into  $\text{LaF}_3$  including both published and unpublished work from this laboratory were reanalyzed. Since the crystals were obtained from a commercial source,<sup>17</sup> the radioactivity associated with  $\text{Pm}$  unfortunately excluded it from study. The tendency of  $\text{EuF}_3$  to reduce to  $\text{EuF}_2$  at the high temperatures required for crystal growth, and the very strong broad band structure associated with  $\text{Eu}^{2+}$  in the visible and ultraviolet range due to  $4f^7 \rightarrow 4f^6 5d$  transitions, has limited the extent of the data available for  $\text{Eu}^{3+}:\text{LaF}_3$ .<sup>7,19</sup>

In the course of the present investigation, measurements were made using several different (0.1-2%) concentrations of most of the lanthanides in  $\text{LaF}_3$ . Spectra in the range  $\sim 4000$ - $15000 \text{ cm}^{-1}$  were recorded using a Cary Model 14R (crystal-grating-0.5 meter monochromator) recording spectrophotometer. In the region  $15000$ - $50000 \text{ cm}^{-1}$ , both a 1-meter Hilger-Engis Model 1000 spectrograph equipped with an EMI 9558 Q photomultiplier, and the Argonne 30-foot Paschen-Runge spectrograph (in second order) were used. Spectra were usually recorded at  $\sim 298$ , 77, and 4 K.

Early conflicting X-ray structure reports suggesting both  $C_{2v}^{20}$  and  $D_{3h}^{21}$  site symmetries of the  $\text{La}^{3+}$  ions in  $\text{LaF}_3$ , were resolved with subsequent studies<sup>8,22,23</sup> showing that the nine nearest-neighbor  $\text{F}^-$  ions present a sufficiently distorted environment so that the symmetry is  $D_{3d}^4$  ( $\text{P}\bar{3}\text{cl}$ ) with a  $C_2$  site symmetry. A powder neutron-diffraction study of  $\text{LaF}_3$  and  $\text{CeF}_3$  provided additional confirmation of the latter structure.<sup>24</sup> Isostructural members of the series are  $\text{LaF}_3$ ,  $\text{CeF}_3$ ,  $\text{PrF}_3$ , and  $\text{NdF}_3$ ;  $\text{SmF}_3$  and the heavier trifluorides are dimorphic and also crystallize in the orthorhombic  $\text{YF}_3$  lattice<sup>25</sup> where each  $\text{Y}^{3+}$  has 8- $\text{F}^-$  at 2.3 Å and one at 2.6 Å.

The crystallographic evidence for a low site symmetry in  $\text{LaF}_3$  was anticipated by the results of an early spectroscopic study of  $\text{PrF}_3$  in which Sayre and Freed<sup>26</sup> pointed out that the number of lines observed at low temperature for electronic transitions associated with several excited states excluded a site symmetry higher than  $C_{2v}$ . The Raman spectrum of  $\text{LaF}_3$  has been interpreted in terms of a  $C_2$  site symmetry of the  $\text{La}^{3+}$ , but these results are also consistent with a small deviation from a higher symmetry.<sup>27</sup>

Many of the lines observed in the low temperature spectrum of  $\text{Nd}^{3+}:\text{LaF}_3$  are polarized.<sup>6</sup> Such effects are not inconsistent with a  $C_2$  (or  $C_{2v}$ ) site symmetry, but no consistent set of selection rules could be discerned. It has been suggested that if there were strong enough coupling between the  $\text{Nd}^{3+}$  ions, that is if they were not statistically distributed in the host  $\text{LaF}_3$ , it could be appropriate to invoke the point group,  $D_{6h}$ , rather than the site group as the symmetry representation. However, a study of concentration quenching of the luminescence of  $\text{Nd}^{3+}$  and of  $\text{Er}^{3+}$  in  $\text{LaF}_3$  indicates that in the doping concentrations usually employed these ions are statistically distributed.<sup>28</sup> The inability to use polarization as an independent check on assignment to a computed level structure is a considerable disadvantage, but is, in part, compensated by the model calculation approach already cited. It does mean that, particularly in groups where several levels are apparently not observed, there is no assurance that all of the correlations made are correct.

### 3.0. THE FREE-ION AND CRYSTAL FIELD HAMILTONIAN

The process of developing a complete Hamiltonian for  $4f^N$  configurations relies on two important physical assumptions: first, we assume that these electronic states are well removed from other electronic states of the complex; and second, we assume that the influence of the non-spherically symmetric part of the electric field due to the solid state environment of the rare earth ion can be treated as a small perturbation of the  $f^N$  free-ion configuration. Thus, we approach the calculation of these electronic properties in two stages. The first deals with the energy-level structure of the gaseous free-ion, and the second with the additional

(crystal-field) interactions which arise when the ion is in a condensed phase. The free-ion or atomic Hamiltonian is assumed to be the same in both cases, and the centers of gravity of groups of crystal-field levels belonging to a particular state are interpreted as the counterparts of the degenerate levels of the gaseous free-ion. Because of the abundance of data in condensed media, and the paucity of true gaseous free-ion data, the free-ion Hamiltonian has been more extensively studied in condensed phases.

The effect of the crystalline environment on the electronic orbitals of the rare earth ion is appreciable, but, nevertheless, does turn out to be small compared with the "free-ion" interactions. Experience has shown that the energy-level structure for the trivalent lanthanides can be adequately treated in terms of a model whose basis states are the free-ion orbitals themselves, without need for specific structural detail of the interaction of the central ion with the ligands. Because the free-ion interactions are dominant, it is important to have an atomic Hamiltonian with enough terms to reproduce accurately the centers of gravity of the observed crystal level groupings.

The interactions primarily responsible for the free-ion structure in trivalent lanthanides are the electrostatic repulsion between electrons in the  $f^N$  configuration and the coupling of their spin and orbital angular momenta. There are two different approaches to modeling these interactions: the Hartree-Fock (HF) and the effective-operator methods. Both evolve from the Schrödinger equation for the steady state of a many-electron system.

The form of the Hamiltonian assumes that the nucleus can be treated as a point charge with infinite mass.<sup>3,4</sup> Since exact solutions are known only in the one-electron case, some method of approximation must be used. In both the HF and effective-operator approaches, the first step is to obtain approximate total wave-functions based on the central field approximation. Each electron is treated as if it moved independently in a spherically symmetric potential,  $-U(r_i)$ , and satisfied equations of the form:

$$\left[ -\frac{\hbar^2}{8\pi^2 m} \nabla^2 + U(r_i) \right] \phi(a^i) = E(a^i) \phi(a^i) . \quad (1)$$

The HF-approach seeks the evaluation of this potential using the variational principle.<sup>29</sup> Computed values of the desired integrals can be obtained to varying degrees of approximation depending upon the sophistication of the computer codes used.

In the effective operator or parametric approach, the Coulomb potential is replaced by an undefined central field potential  $U(r)$ , eqn. (1). Variables are separated as for the hydrogen atom, and the angular parts of the interaction are evaluated explicitly. Since the radial equation contains the undefined function,  $U(r)$ , it cannot be solved. The radial integrals are therefore treated as parameters to be evaluated from experimental data via an appropriate fitting procedure. The energy expression has the same form as that of the HF approach, but there is no radial function from which to evaluate the integrals. If we now add the spin variables, the atomic Hamiltonian,  $H$ , has the form:

$$H = H_0 + H_{EL} + H_{SO} . \quad (2)$$

$H_0$  (involves the kinetic energy of the electrons and their interaction with the nucleus<sup>3,4</sup>)

$$H_{EL} \text{ (electrostatic term)} \quad E_{EL} = \sum_{k=0}^6 f_k F^k \text{ (k even)} \quad (3)$$

$$H_{SO} \text{ (spin-orbit interaction)} \quad E_{SO} = A_{SO} \zeta_f . \quad (4)$$

The  $F^k$  and  $\zeta_f$  are the electrostatic and spin-orbit integrals;  $f_k$  and  $A_{SO}$  represent the angular parts of the electrostatic and spin-orbit interactions, respectively. Although the same symbol is used, the  $F^k$  integrals as defined here are not to be identified as those of the HF model. As parameters, they absorb some of the effects of configuration interaction which are not part of the HF definition.

In eqn. 2 there is no explicit attempt to include the effects of configuration interaction, (CI). Rather, such effects are introduced into the Hamiltonian by the use of perturbation theory which allows one to represent some of the most important effects of CI by additional 2- and 3-body

(effective) operators operating wholly within the  $f^N$  configuration. The two-body (scalar) effective-operator terms are expressed here in the form given by Rajnak and Wybourne.<sup>30</sup> The Hamiltonian, eqn. (2), with the added two-body operators is written:

given by Rajnak and Wybourne.<sup>30</sup> The Hamiltonian, eqn. (2), with the added two-body operators is written:

$$H = H_0 + \sum_{k=0}^6 F^k(nf, nf) f_k + \zeta_f A_{SO} + \alpha L(L+1) + \beta G(G_2) + \gamma G(R_7) \quad (k \text{ even}) \quad (5)$$

The parameters associated with the two-body correction terms are designated  $\alpha$ ,  $\beta$ , and  $\gamma$ ;  $G(G_2)$  and  $G(R_7)$  are Casimir's operators for the groups  $G_2$  and  $R_7$ , and  $L$  is the total orbital angular momentum.<sup>3</sup> The effects of configuration interaction that can be expressed in the same form as the  $f_k$  are of course automatically absorbed in the  $F^k$  radial integrals when they are treated as parameters. The additional terms,  $\alpha$ ,  $\beta$ , and  $\gamma$  represent effects that do not transform as the  $f_k$ .

The values of  $\alpha$ ,  $\beta$ , and  $\gamma$  arising from electrostatic configuration interaction calculated for  $Pr^{3+}$  by Morrison and Rajnak<sup>31</sup> using ab initio methods were in good agreement with those obtained by fitting experimental data, as shown in Table 1. One of the insights gained from this work was that higher energy processes such as excitation of one or two particles to the continuum made large contributions to the parameter values. The fact that the energies of the continuum states relative to the  $f^N$  configurations do not change significantly with atomic number may help to explain the near constancy of the fitted parameter values across the lanthanide series.<sup>10,32</sup> A subsequent perturbed-function approach to the calculation of the continuum interactions confirmed the earlier results.<sup>33</sup>

For configurations of three or more equivalent f electrons, three-particle configuration interaction terms have been added to the model in the form given by Judd.<sup>34,35</sup> Such terms arise from the perturbing effects of those configurations that differ from  $f^N$  in the quantum numbers of a single electron. They are expressed as  $t_i T^i$  ( $i = 2, 3, 4, 6, 7, 8$ ) where  $T^i$  are the parameters and  $t_i$  are three-particle operators, whose matrix elements are computed as shown in Ref. 34. As in the case of the two-body

Table 1. Elements of the Parametric Hamiltonian

|                                                          |           | <u>Sm<sup>3+</sup> (4f<sup>5</sup>)</u><br><u>LaF<sub>3</sub> (cm<sup>-1</sup>)<sup>a</sup></u> | <u>Sm<sup>3+</sup> (4f<sup>5</sup>)</u><br><u>LaCl<sub>3</sub> (cm<sup>-1</sup>)<sup>a,b</sup></u> | <u>Pu<sup>3+</sup> (5f<sup>5</sup>)</u><br><u>LaCl<sub>3</sub> (cm<sup>-1</sup>)<sup>a,c</sup></u> | Ab Initio Calc.<br>(cm <sup>-1</sup> ) |
|----------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------|
| $H_E$ (Electrostatic Term)                               | $F^2$     | 79805                                                                                           | 78125                                                                                              | 48670                                                                                              | 110157 <sup>d</sup>                    |
| $\sum_{k=0}^5 f_k F^k$ (k-even)                          | $F^4$     | 57175                                                                                           | 56809                                                                                              | 39128                                                                                              | 69143                                  |
|                                                          | $F^6$     | 40250                                                                                           | 40061                                                                                              | 27493                                                                                              | 49758                                  |
| $H_{SO}$ (Spin-Orbit Interaction)                        | $\zeta_f$ | 1176                                                                                            | 1168                                                                                               | 2241                                                                                               | 1243 <sup>d</sup>                      |
| $A_{SO}\zeta_f$                                          |           |                                                                                                 |                                                                                                    |                                                                                                    |                                        |
| $H_{CI(2)}$ (Two-body Configuration Interaction)         | $\alpha$  | 20.2                                                                                            | 21.6                                                                                               | 29.7                                                                                               | 28                                     |
| $\alpha L(L+1) + \beta G(G_2) + \gamma G(R_7)$           | $\beta$   | -567                                                                                            | -724                                                                                               | -671                                                                                               | -615                                   |
|                                                          | $\gamma$  | [1500]                                                                                          | [1700]                                                                                             | 1067                                                                                               | 1611                                   |
| $H_{CI(3)}$ (Three Particle Configuration Interaction)   | $T^2$     | [300]                                                                                           | 291                                                                                                | 186                                                                                                | 394                                    |
| $\sum_i t_i T^i$ ( $i = 2, 3, 4, 6, 7, 8$ )              | $T^3$     | [36]                                                                                            | 13                                                                                                 | 48                                                                                                 | -34                                    |
|                                                          | $T^4$     | [56]                                                                                            | 34                                                                                                 | 38                                                                                                 | 89                                     |
|                                                          | $T^6$     | -347                                                                                            | -193                                                                                               | -364                                                                                               | -214                                   |
|                                                          | $T^7$     | 373                                                                                             | 288                                                                                                | 364                                                                                                | 314                                    |
|                                                          | $T^8$     | 348                                                                                             | 330                                                                                                | 332                                                                                                | 274                                    |
| Electrostatically Correlated Spin-Orbit Interaction      |           |                                                                                                 |                                                                                                    |                                                                                                    |                                        |
| (Two-Body Pseudo-Magnetic Operators)                     | $P^2$     | 357 <sup>e</sup>                                                                                | 341 <sup>e</sup>                                                                                   | 822 <sup>e</sup>                                                                                   | 128 <sup>h</sup>                       |
|                                                          | $P^4$     | 178                                                                                             | 256                                                                                                | 616                                                                                                | 86                                     |
|                                                          | $P^6$     | 35.7                                                                                            | 170                                                                                                | 411                                                                                                | 63                                     |
| Spin-Other-Orbit and Spin-Spin Effects: Marvin Integrals | $M^0$     | 2.60 <sup>i</sup>                                                                               | 2.40 <sup>i</sup>                                                                                  | 0.95 <sup>i</sup>                                                                                  | 2.75 <sup>d</sup>                      |
|                                                          | $M^2$     | 1.45                                                                                            | 1.34                                                                                               | 0.53                                                                                               | 1.54                                   |
|                                                          | $M^4$     | 0.99                                                                                            | 0.91                                                                                               | 0.36                                                                                               | 1.04                                   |
| Crystal Field Interaction                                |           | $\sum_{k,q,i} B_q^{(k)} C_q^{(k)}(i)$ (terms appropriate to the crystal symmetry)               |                                                                                                    |                                                                                                    |                                        |

<sup>a</sup> Fitted to experimental data; values in brackets were not varied.

<sup>b</sup> Reference 10

<sup>c</sup> Reference 32

<sup>d</sup> Values computed for 4f<sup>5</sup> using a relativistic Hartree-Fock code.

<sup>e</sup> Reference 31

<sup>f</sup> Reference 36

<sup>g</sup>  $P^2$  was freely varied, but  $P^4$  and  $P^6$  were constrained by the ratios  $P^4/P^2 = 0.5$  and  $P^6/P^2 = 0.1$  for Sm<sup>3+</sup>:LaF<sub>3</sub>, and the ratios 0.75 and 0.50, respectively, for Sm<sup>3+</sup>:LaCl<sub>3</sub> and Pu<sup>3+</sup>:LaCl<sub>3</sub>.

<sup>h</sup> Reference 39

<sup>i</sup>  $M^0$  was freely varied, but  $M^2$  and  $M^4$  were constrained by the ratios  $M^2/M^0 = 0.56$ , and  $M^4/M^0 = 0.38$ .

terms, values of the three-particle correction parameters have been calculated by ab initio methods<sup>36</sup> and found to agree with those defined by fitting experimental data.<sup>35</sup> In a similar manner four-particle and higher order terms could be defined for appropriate configurations. However, they do not appear to be necessary to a good representation of the experimental data.

Magnetically-correlated corrections to the working model have also been introduced using the form suggested by Judd et al.<sup>37</sup> Values of the Marvin integrals,<sup>38</sup>  $M^h$  ( $h = 0, 2, 4$ ), which represent spin-spin and spin-other-orbit relativistic corrections, have been determined from parametric fits to some experimental data, and were found to be similar to those computed using HF-methods. Of the two-body magnetic corrections, the most important appears to be the electrostatically correlated spin-orbit perturbation which involves the excitation of an f electron into a higher-lying f-shell. The corresponding parameters  $P^f$  ( $f = 2, 4, 6$ ) for lanthanides in crystals as evaluated by parametric fitting are consistent with values derived via HF methods.<sup>39</sup> To complete the correlations between parametric fit values and those computed via HF methods for the atomic Hamiltonian, results for the  $F^k$  using HF methods with a relativistic correction<sup>40</sup> have been computed, and are the subject of an extensive review.<sup>41</sup>

Although extensive corrections to the basic free-ion Hamiltonian, Eqn. (2), have been developed, practically all crystal-field calculations are carried out using a single-particle crystal-field theory<sup>3,4</sup> in which the parameters are appropriate to a given site symmetry:

$$H_{CF} = \sum_{k,q,i} B_q^{(k)} C_q^{(k)}(i) , \quad (6)$$

where  $C_q^{(k)}(i)$  is a spherical tensor of rank  $k$  depending on the coordinates of the  $i^{\text{th}}$  electron and the summation involving  $i$  is over all f electrons of the ion of interest; the values of  $k$  and  $q$  for which the parameters  $B_q^{(k)}$  are nonzero depend on the site symmetry. To complete the interactions shown in Eqn. (5), the following terms are included in the Hamiltonian currently used in the parametric fitting of the experimental data:

$$\sum_{i=2,3,4,6,7,8} t_i T^i + \sum_{h=0,2,4} m_h M^h + \sum_{f=2,4,6} p_f P^f + \\
 \sum_{k,q,i} B_q^{(k)} C_q^{(k)}(i)$$

Typical values of the free-ion parameters obtained for fits to experimental data for the  $f^5$ -configuration,  $\text{Sm}^{3+}:\text{LaF}_3$ ,  $\text{Sm}^{3+}:\text{LaCl}_3$  and the actinide ion,  $\text{Pu}^{3+}:\text{LaCl}_3$ , together with representative values computed by ab initio methods are shown in Table 1.

As has already been pointed out, the actual site symmetry in  $\text{LaF}_3$  is  $C_2$ . However, the crystal-field calculation in  $C_2$  symmetry requires determination of 14 independent parameters of which 5 have imaginary matrix elements.<sup>3,4</sup> This is a major computational problem when coupled with an extensive free-ion treatment. We reduced the number of crystal-field parameters to 9 by using an approximate  $C_{2v}$  symmetry, which is crystallographically appropriate in this case and is low enough to completely remove the symmetry-related degeneracy of crystal-field states. For configurations ( $f^4-f^{10}$ ) in which the Hamiltonian matrices including the  $C_{2v}$  crystal-field are greater than 200 by 200 we have used a method of truncation to select manageable portions of this matrix. The eigenstates of the free-ion Hamiltonian provide the basis states for these truncations.<sup>41</sup>

#### 4.0. ANALYSIS OF EXPERIMENTAL DATA

Two different approaches to use of the  $C_{2v}$  approximation in treating spectra of  $\text{Ln}^{3+}:\text{LaF}_3$  have been taken. One is to maintain the  $D_{3h}$  symmetry axis and add the additional parameters required in  $C_{2v}$  symmetry to simulate the distortion from  $D_{3h}$  symmetry. This was the course which we first explored. One of the problems encountered was that the  $D_{3h}$  approximation provides such a good correlation between experiment and theory for odd-electron systems that it is difficult to adequately determine the extra parameters arising in  $C_{2v}$  symmetry. Even the signs of some of these parameters can turn out to be indeterminate, depending upon the data being fit. This approach has also been discussed by Caro and coworkers.<sup>42</sup>

Another approach is to fit the crystal-field states of an odd-N system using as an initializing set the values of the real parameters computed for  $\text{LaF}_3$  in  $C_2$  symmetry.<sup>12</sup>

The values shown in Table 2 illustrate the relationship of the crystal-field parameters for  $\text{Nd}^{3+}:\text{LaF}_3$  computed from a point-charge model assuming first  $D_{3h}$ , then  $C_2$  point symmetry but with two different crystal axes. As noted in the table, the computed values in  $D_{3h}$  symmetry are similar to the results published by Onopko,<sup>9</sup> as well as to those determined in our fitting of experimental data.<sup>11</sup> When the real parts of the lattice sum calculation in  $C_2$ -symmetry with the z-axis of the  $A_{nm}$  parallel to the crystal axis, column 2 of Table 2, were used to initiate the least squares fitting of data (approximate  $C_{2v}$  symmetry) the problem of certain parameters having indeterminate values was encountered. Comparing columns (1)  $D_{3h}$  and (2)  $C_2$ -symmetry, it is apparent why this might happen, since the large values of  $B_0^4$ ,  $B_0^6$ , and  $B_6^6$  in the initializing set can dominate the subsequent fitting process. In contrast, by using the real parts of the third set ( $C_2$ ) in Table 2 to initialize the fitting process (z-axis of the  $A_{nm}$  perpendicular to the crystal axis), all 9 parameters were determined in several cases as in column (5) Table 2, and most of the parameters were typically determined. Since  $B_2^2$  is small, it was frequently assigned a constant value.

The absorption spectrum of  $\text{Nd}^{3+}:\text{LaF}_3$  played a critical role in the analysis of other light lanthanide spectra. The crystal-field parameters determined for  $\text{Nd}^{3+}:\text{LaF}_3$  were used to model the energy level structures in  $\text{Pr}^{3+}$  and  $\text{Pm}^{3+}$ , as well as  $\text{Sm}^{3+}:\text{LaF}_3$ . Predicted splitting patterns were compared group by group with the experimental data as a means of discriminating against assignments to more intense vibrational modes.

For the heavy lanthanides, the model crystal-field parameters were derived for  $\text{Er}^{3+}:\text{LaF}_3$ . Starting with Onopko's insight into the structure of the ground state in  $D_{3h}$  site symmetry,<sup>9</sup> we obtained an excellent agreement between theory and experiment over the entire range of observation for  $\text{Er}^{3+}:\text{LaF}_3$ . Because of the very large number of assignments, we were subsequently able to determine the crystal-field parameters in  $C_{2v}$  symmetry. The  $\text{Nd}^{3+}:\text{LaF}_3$  and  $\text{Er}^{3+}:\text{LaF}_3$  systems are unique in the lanthanide series in

Table 2.

Crystal-Field Parameter Values (in terms of  $B_q^{(k)}$  in  $\text{cm}^{-1}$ ) for  $\text{Nd}^{3+}:\text{LaF}_3$  Obtained  
from Lattice Sum Calculations Compared to Fit Values in  $C_2$  and  $C_{2v}$  Symmetries

| $B_q^{(k)}(D_{3h})^a$ |      | $B_q^{(k)}(C_2)^b$ |       | $B_q^{(k)}(C_2)^c$ |       | $B_q^{(k)}(C_2)^d$ |       | $B_q^{(k)}(C_{2v})^e$ |       |
|-----------------------|------|--------------------|-------|--------------------|-------|--------------------|-------|-----------------------|-------|
| $kq$                  | Real | Real               | Imag. | Real               | Imag. | Real               | Imag. | Real                  | Imag. |
| 20                    | 465  | 66                 | 0     | -145               | 0     | -216               | 0     | -256(22)              | 0     |
| 22                    |      | -46                | 79    | 5                  | 0     | -36                | 0     | -48(12)               | 0     |
| 40                    | 1849 | 994                | 0     | 652                | 0     | 700                | 0     | 496(73)               | 0     |
| 42                    |      | -103               | 178   | 422                | 118   | 197                | 71    | 521(39)               | 0     |
| 44                    |      | -56                | -96   | 397                | 241   | 229                | 181   | 563(41)               | 0     |
| 60                    | 949  | 844                | 0     | 523                | 0     | 490                | 0     | 641(54)               | 0     |
| 62                    |      | 17                 | -30   | -793               | 66    | -928               | -23   | -839(39)              | 0     |
| 64                    |      | 14                 | 24    | -113               | -342  | -131               | -449  | -408(35)              | 0     |
| 66                    | 862  | 784                | 0     | -442               | -442  | -427               | -653  | -831(41)              | 0     |

Table 2. (cont.)

<sup>a</sup>Lattice sum calculation<sup>12</sup> based on crystal structure data of K. Schylter,<sup>21</sup> similar to results of Onopko<sup>9</sup>. The c-axis and the  $D_{3h}$  axis are parallel.

<sup>b</sup>Lattice sum calculation<sup>12</sup> based on crystal structure of Cheetham et al.,<sup>24</sup> but with the z-axis of the  $A_{1m}$  parallel to the crystal axis.

<sup>c</sup>Lattice sum calculation<sup>12</sup> based on crystal structure of Cheetham et al.<sup>24</sup> with the z-axis of the  $A_{1m}$  perpendicular to the crystal axis.

<sup>d</sup>Fit to experimental data for  $\text{Nd}^{3+}:\text{LaF}_3$ ,<sup>12</sup> z-axis as in (c).

<sup>e</sup>Fit to experimental data, complete diagonalization of free-ion and crystal-field matrices, z-axis as in (c). (Errors shown in parentheses).

the number of distinct free-ion states that are well separated in energy and in which the number of prominent crystal-field components corresponds to the expected number of crystal-field levels.

Use of the  $\text{Er}^{3+}$  crystal-field parameters in  $C_{2v}$  site symmetry with free-ion parameters for  $\text{Ho}^{3+}$  and  $\text{Tm}^{3+}$  resulted in numerous correlations with observed spectroscopic structure in the latter two ions. The initial "model" parameters for each ion were subsequently modified by a fit to level energies assigned to be consistent with the model calculations. The modified parameters in turn formed the detailed "model" for the next member of the series. Thus the initial parameters for  $\text{Tb}^{3+}$  were based on the analysis of  $\text{Dy}^{3+}:\text{LaF}_3$ .<sup>15</sup>

#### 5.0. SUMMARY OF EXPERIMENTAL RESULTS AND THEIR INTERPRETATION

The following summary of experimental results for  $\text{Ln}^{3+}:\text{LaF}_3$  does not attempt to be a complete review of the literature. Reference is limited to more extensive experimental investigations. The bulk of the tabulated experimental data taken in absorption was drawn from measurements made in the course of the present investigation. The fluorescence and far-infrared spectra are quoted from the literature. All data are reported in  $\text{cm}^{-1}$  (vacuum).

##### 5.1. $\text{Ce}^{3+}:\text{LaF}_3$ ( $4f^1$ )

An examination of the infrared spectrum of  $\text{Ce}^{3+}:\text{LaF}_3$ ,<sup>43</sup> revealed four bands that persisted at  $\sim 4$  K identified as the components of the  $^2F_{7/2}$  multiplet. Temperature dependent studies provided evidence for a component of the  $^2F_{5/2}$  group at  $150 \text{ cm}^{-1}$ . Energy levels of the  $^2F_{5/2}$  state deduced from Raman spectra were placed in the  $140$ - $170 \text{ cm}^{-1}$  range and near  $300 \text{ cm}^{-1}$ .<sup>44</sup>

The crystal-field parameters obtained in the fit of data for  $\text{Pr}^{3+}:\text{LaF}_3$  were used as a model for  $\text{Ce}^{3+}:\text{LaF}_3$ , and in the initial fitting procedure, only  $\zeta$  was allowed to vary. While the resulting parameter set yielded a computed energy level scheme that was consistent with the observed structure, the correlation was significantly improved using the value  $B_2^2 = -50$

$\text{cm}^{-1}$  instead of  $-120 \text{ cm}^{-1}$ . The lower value was also more consistent with trends in values for this parameter over the series as a whole. The fit to the observed energy levels and the final parameter values are shown in Tables 3 and 4, respectively.

An attempt was made to vary selected crystal-field parameters, since the whole set could not be varied simultaneously with such a limited number of observations. When  $B_0^4$ ,  $B_0^6$ , and  $B_6^6$  were varied in addition to  $\zeta$ , the fit to experiment was improved but the parameter magnitudes increased relative to those for  $\text{Pr}^{3+}:\text{LaF}_3$ . Actually, an increase in the magnitude of the parameters is not unreasonable considering that the ionic radius of  $\text{Ce}^{3+}$  (1.034 Å) is considerably larger than that of the model  $\text{Pr}^{3+}$  (1.013 Å).<sup>1</sup> However in this case, since the number of parameters varied simultaneously must be severely limited, we only note that the trends in crystal-field parameter magnitudes extrapolated from analyses of other light lanthanide ions in  $\text{LaF}_3$  are fully consistent with the experimental results.

### 5.2. $\text{Pr}^{3+}:\text{LaF}_3$ ( $4f^2$ )

Spectroscopic investigations of  $\text{Pr}^{3+}:\text{LaF}_3$  at several laboratories at moderate to high resolution have identified crystal-field components of most of the states.<sup>45-51</sup> However, one of the weak points in the theoretical analysis has been the lack of rationale for unique assignments to components of the  $^1\text{I}_6$  state. The intense components of  $^3\text{P}_1$  are readily identified although they occur in the same region of the spectrum as that predicted for  $^1\text{I}_6$ . It has not been possible to distinguish apparent vibronic structure possibly in part associated with the  $^3\text{P}_1$  levels from very low intensity electronic transitions to the  $^1\text{I}_6$  state. As it turns out, the two-body operator parameterized by  $\alpha$  is essentially defined by the energy of the  $^1\text{I}_6$  state. Changes in  $\alpha$  can shift the center of gravity of  $^1\text{I}_6$  with respect to that of  $^3\text{P}_1$  with little if any affect on the computed level energies for the rest of the configuration. Thus when we modelled the crystal-field splitting in  $\text{Pr}^{3+}:\text{LaF}_3$  using the crystal-field parameters of  $\text{Nd}^{3+}:\text{LaF}_3$  we were still only able to define an approximate value of  $\alpha$ . The rationale for a possible definition is provided by the following discussion.

Table 3.  
Experimental and Computed Energy Level Structure for  $\text{Ce}^{3+}:\text{LaF}_3$

| SLJ                | Obs. <sup>a</sup><br>( $\text{cm}^{-1}$ ) | Calc. <sup>b</sup><br>( $\text{cm}^{-1}$ ) | O-C |
|--------------------|-------------------------------------------|--------------------------------------------|-----|
| State              |                                           |                                            |     |
| $^2\text{F}_{5/2}$ | 0                                         | -3                                         | 3   |
|                    | 151                                       | 152                                        | -1  |
|                    | 280 <sup>c</sup>                          | 284                                        | -4  |
| $^2\text{F}_{7/2}$ | 2160                                      | 2235                                       | -75 |
|                    | 2240                                      | 2274                                       | -34 |
|                    | 2635                                      | 2586                                       | 49  |
|                    | 2845                                      | 2783                                       | 62  |

<sup>a</sup>Ref. 43 ( $\text{cm}^{-1}$  vac).

<sup>b</sup>Parameter values are given in Table 4.

<sup>c</sup>Ref. 44.

Table 4. Energy Level Parameters for  $\text{Ln}^{3+}:\text{LaF}_3$  (in  $\text{cm}^{-1}$ ) <sup>a</sup>

|                       | $\text{Ce}$ | $\text{Pr}$ | $\text{Nd}$ | $\text{Pm}$ | $\text{Sm}$ | $\text{Eu}$ | $\text{Gd}$ | $\text{Tb}$ | $\text{Dy}$ | $\text{Ho}$ | $\text{Er}$ | $\text{Tm}$ | $\text{Yb}$ |
|-----------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| $\text{F}^2$          |             | 68878(23)   | 73018(19)   | 76400       | 79805(16)   | 83125(31)   | 85669(17)   | 88995(58)   | 91903(69)   | 94564(38)   | 97483(32)   | 100134(23)  |             |
| $\text{F}^4$          |             | 50347(69)   | 52789(94)   | 54900       | 57175(45)   | [59268 R]   | [60825 R]   | [62919 R]   | 64372(147)  | 66397(64)   | 67904(67)   | 69613(62)   |             |
| $\text{F}^6$          |             | 32901(37)   | 35757(42)   | 37700       | 40250(26)   | [42560 R]   | 44776(24)   | 47252(72)   | 49386(139)  | 52022(63)   | 54010(60)   | 55975(104)  |             |
| $\zeta$               | 647.3(11)   | 751.7(2)    | 885.3(1)    | 1025        | 1176(1)     | 1338(3)     | 1508(2)     | 1707(2)     | 1913(2)     | 2145(1)     | 2376(2)     | 2636(1)     | 2928(10)    |
| $\alpha$              |             | 16.23(.23)  | 21.34(.14)  | 20.50       | 20.16(.89)  | [20.16]     | 18.92(.83)  | 18.40(.19)  | 18.02(.23)  | 17.15(.11)  | 17.79(.20)  | 17.26(.30)  |             |
| $\beta$               |             | -566.6(15)  | -593.0(8)   | -560        | -566.9(8)   | [-566.9]    | [-600]      | -590.9(29)  | -633.4(10)  | -607.9(6)   | -582.1(10)  | -624.5(15)  |             |
| $\gamma$              |             | 1371(13)    | 1445(16)    | 1475        | [1500]      | [1500]      | [1575]      | [1650]      | 1790(47)    | [1800]      | [1800]      | [1820]      |             |
| $\tau^2$              |             | 298(6)      | 300         | [300]       | [300]       | [300]       | [320]       | 329(9)      | [400]       | [400]       | [400]       | [400]       |             |
| $\tau^3$              |             | 35(3)       | 35          | [36]        | [40]        | [42]        | [40]        | 36(5)       | 37(2)       | 43(5)       |             |             |             |
| $\tau^4$              |             | 59(4)       | 58          | [56]        | [60]        | [62]        | [50]        | 127(22)     | 107(5)      | 73(5)       |             |             |             |
| $\tau^6$              |             | -285(6)     | -310        | -347(7)     | [-300]      | [-295]      | -395(28)    | -314(16)    | -264(16)    | -271(11)    |             |             |             |
| $\tau^7$              |             | 332(8)      | 350         | 373(7)      | [370]       | [350]       | 303(17)     | 404(8)      | 316(20)     | 308(18)     |             |             |             |
| $\tau^8$              |             | 305(10)     | 320         | 348(5)      | [320]       | [310]       | 317(13)     | 315(7)      | 336(8)      | 299(17)     |             |             |             |
| $M^0$ <sup>b</sup>    |             | 2.08(.3)    | 2.11(.1)    | 2.4         | 2.60(.1)    | [2.1]       | 3.22(.2)    | 2.39(.1)    | 3.39(.1)    | 2.54(.1)    | 3.88(.2)    | 3.81(0.3)   |             |
| $P^2$ <sup>c</sup>    |             | -88.6(47)   | 192(31)     | 275         | 357(28)     | [360]       | 676(75)     | 373(53)     | 719(30)     | 605(24)     | 594(63)     | 695(46)     |             |
| $B^2$                 | [-218]      | -218(16)    | -256(16)    | -245        | -224(19)    | -217(56)    | [-231]      | -231(24)    | -244(18)    | [-240]      | -238(17)    | -249(14)    | [-249]      |
| $B^4$                 | [738]       | 738(40)     | 496(73)     | 470         | 452(47)     | 413(85)     | [604]       | 604(49)     | 506(43)     | 560(27)     | 453(90)     | 457(29)     | [457]       |
| $B^6$                 | [679]       | 679(48)     | 641(54)     | 640         | 649(47)     | 558(92)     | [280]       | 280(38)     | 367(40)     | 376(28)     | 373(83)     | 282(42)     | [282]       |
| $B^8$                 | [-50]       | -120(13)    | -48(12)     | -50         | [-50]       | [-50]       | [-99]       | -99(16)     | -65(12)     | -107(10)    | -91(14)     | -105(9)     | [-105]      |
| $B^2$                 | [431]       | 431(27)     | 521(39)     | 525         | 597(29)     | [597]       | [340]       | 340(34)     | 305(33)     | 250(19)     | 308(60)     | 320(21)     | [320]       |
| $B^4$                 | [616]       | 616(27)     | 563(41)     | 490         | 408(28)     | [408]       | [452]       | 452(31)     | 523(25)     | 466(19)     | 417(56)     | 428(22)     | [428]       |
| $B^6$                 | [-921]      | -921(32)    | -839(39)    | -750        | -706(33)    | [-706]      | [-721]      | -721(29)    | -590(24)    | -576(18)    | -489(51)    | -482(33)    | [-482]      |
| $B^8$                 | [-348]      | -348(41)    | -408(35)    | -450        | -508(34)    | [-508]      | [-204]      | -204(29)    | -236(27)    | -227(20)    | -240(51)    | -234(36)    | [-234]      |
| $n$ <sup>d</sup>      | 7           | 75          | 146         |             | 232         | 29          | 70          | 146         | 198         | 204         | 127         | 56          | 5           |
| $\sigma$ <sup>d</sup> | 51          | 16          | 14          |             | 13          | 16          | 10          | 12          | 12          | 10          | 19          | 10          | 38          |

<sup>a</sup> Values in parentheses are errors in the indicated parameters. Values in brackets were either not allowed to vary in the parameter fitting, or if followed by an R, were constrained: For  $\text{Eu}^{3+}$ ,  $F^4/F^2 = 0.713$ ,  $F^6/F^2 = 0.512$ ; for  $\text{Gd}^{3+}$ ,  $F^4/F^2 = 0.710$ ; for  $\text{Tb}^{3+}$ ,  $F^4/F^2 = 0.707$ . All parameters for  $\text{Pm}^{3+}$  are interpolated values.

<sup>b</sup>  $M^0$  was varied freely,  $M^2$  and  $M^4$  were constrained by the ratios  $M^2 = 0.56 M^0$ ,  $M^4 = 0.31 M^0$ .

<sup>c</sup>  $P^2$  was varied freely,  $P^4$  and  $P^6$  were constrained by the ratios  $P^4 = 0.5 P^2$ ,  $P^6 = 0.1 P^2$ .

<sup>d</sup> Deviation ( $\sigma$ ) =  $\sum[(\Delta i)^2/n-p]^{1/2}$ , where  $\Delta i$  is the difference between observed and calculated energies,  $n$  is the number of levels fit, and  $p$  is the number of parameters freely varied.

The model crystal-field for  $\text{Pr}^{3+}:\text{LaF}_3$  based on parameters for  $\text{Nd}^{3+}:\text{LaF}_3$ , with an earlier approximate set of free-ion parameters,<sup>45</sup> yielded an energy level scheme that was generally in very good agreement with the experimental data.<sup>13</sup> As anticipated, several modifications of the original assignments<sup>45</sup> were indicated. Correlations between computed and assigned energy levels appeared to be distorted by inclusion of levels at 508 and 4552  $\text{cm}^{-1}$ . Typical experimental results are shown in Fig. 1 where the model calculation is indicated for comparison.

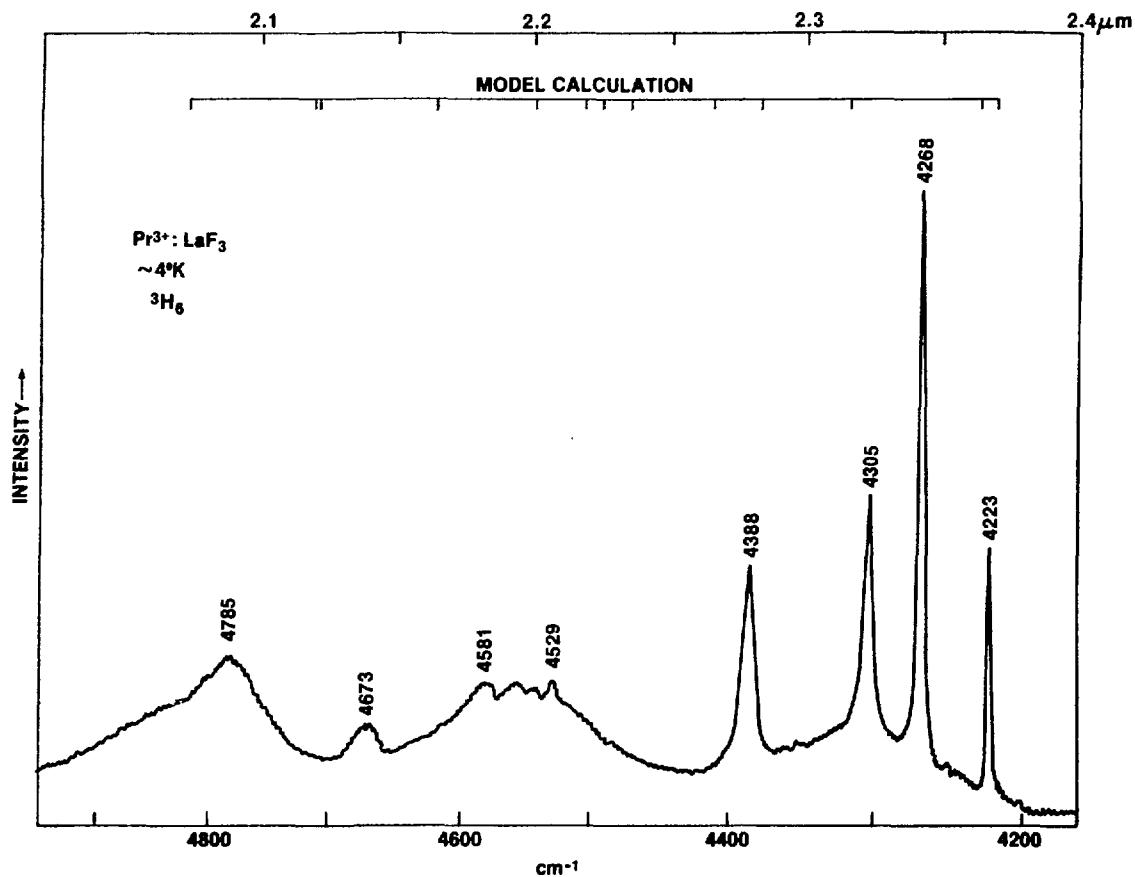



Fig. 1. Comparison of the Experimental Absorption Spectrum of  $\text{Pr}^{3+}:\text{LaF}_3$  with the Model Energy Level Calculation in the Range  $4200-4900 \text{ cm}^{-1}$  (the  $^3\text{H}_6$  State) at  $\sim 4 \text{ K}$ .

The recent measurements of the energy of the  $^1\text{S}_0$  level<sup>50,51</sup> are more accurate than, but within the limits of error of, the previous value.<sup>45</sup> If we take the new value together with the reported energies of transitions

from  $^1S_0$  to levels of the  $^3F_4$ ,  $^1G_4$ , and  $^1I_6$  states,<sup>49</sup> and correct to  $\text{cm}^{-1}$  vac, several new assignments can be made, Table 5.

In the  $^3F_4$  state, the  $7025 \text{ cm}^{-1}$  fluorescence line from  $^1S_0$  agrees well with a transition observed in absorption, Appendix I, as does that at  $7105 \text{ cm}^{-1}$ , whereas the  $7089 \text{ cm}^{-1}$  line must, according to the model calculation, refer to another, possibly a perturbed site. We do see evidence of side-band structure at this energy in absorption.

Four of the five transitions connecting  $^1S_0$  to the  $^1G_4$  state, reported in fluorescence, are consistent with transitions predicted by the model calculation, and with structure observed in absorption in the present experimental study, Appendix I. As in the results for the  $^3F_4$  state, there appear to be two lines,  $10035$  and  $10057 \text{ cm}^{-1}$ , which correspond to a single level observed in absorption.

While the  $^1D_2$  state was not reported to be connected by fluorescence to the  $^1S_0$  state, the model calculation suggests an interpretation of the transitions observed in absorption to the  $^1D_2$  state that is inconsistent with previous proposed interpretations,<sup>45,48</sup> Figure 2.

A very interesting result of the reported fluorescence from  $^1S_0$  is that attributed to terminal levels in the  $^1I_6$  state. We noted earlier that the model predicts a very wide splitting of  $\sim 600 \text{ cm}^{-1}$  for the  $^1I_6$  state, Appendix I, but unique assignments were lacking. We noted previously<sup>13</sup> generally good correspondence between the model calculation and experiment with an assumed value of  $\alpha$ . Examining the fluorescence results, Table 5, we see that they do span the predicted  $\sim 600 \text{ cm}^{-1}$ . While levels at  $21279$  and  $21331 \text{ cm}^{-1}$  do not correspond to any structure observed in absorption, Fig. 3, there are weak bands near  $21585 \text{ cm}^{-1}$  and  $21897 \text{ cm}^{-1}$ . Thus we allowed these four transitions to define the energy of the  $^1I_6$  state. This, together with assignment of the  $^1S_0$  state, which defines the value of  $\gamma$ , specifies the free-ion parameters. Only a small adjustment in the crystal-field is required for an excellent correspondence between theory and experiment, Appendix I. Several additional assignments consistent with the new model and the results indicated in Fig. 3 were then made. The observed structure for  $^3P_2$  is compared to the model calculation in Fig. 4. The final set of parameters values, Table 4, is consistent with

Table 5.  
Emissions from the  $^1S_0$  State of  $\text{Pr}^{3+}:\text{LaF}_3$ <sup>a</sup>

| $S'J'$  |   | $\lambda$ (Å) | $\text{cm}^{-1}$ (vac) | Terminal State ( $\text{cm}^{-1}$ ) <sup>b</sup> |
|---------|---|---------------|------------------------|--------------------------------------------------|
| $^1I_6$ | A | 3892          | 25686                  | 21279                                            |
|         | B | 3900          | 634                    | 331                                              |
|         | C | 3939          | 380                    | 585                                              |
|         | D | 3988          | 068                    | 897                                              |
| $^1G_4$ | A | 2686          | 37219                  | 9746                                             |
|         | B | 2697          | 067                    | 9898                                             |
|         | C | 2707          | 36930                  | 10035                                            |
|         | D | 2716          | 808                    | 057                                              |
|         | E | 2741          | 472                    | 493                                              |
| $^3F_4$ | A | 2503          | 39940                  | 7025                                             |
|         | B | 2507          | 876                    | 7089                                             |
|         | C | 2508          | 860                    | 7105                                             |

<sup>a</sup>Ref. 49.

<sup>b</sup>Assume the initial state is in every case  $^1S_0$  at  $46965 \text{ cm}^{-1}$  (vac).<sup>51</sup>

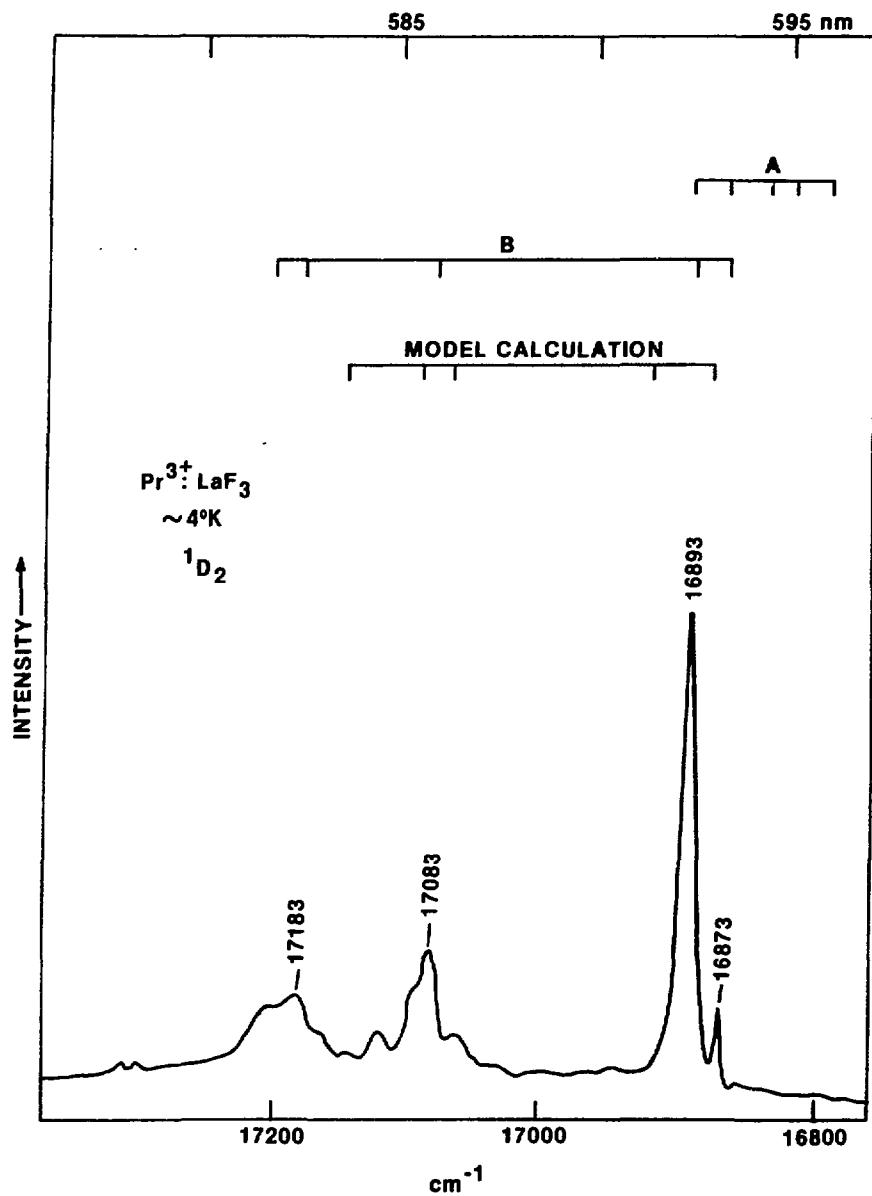



Fig. 2. Comparison of the Experimental Absorption Spectrum  $\text{Pr}^{3+}:\text{LaF}_3$  with the Model Energy Level Calculation and with Previous Proposed Interpretations (A. Assignments of Ref. 48, B. Assignments of Ref. 45) of the Energy Level Structure in the Range  $16800-17400 \text{ cm}^{-1}$  (the  $^1\text{D}_2$  State) at  $\sim 4 \text{ K}$ .

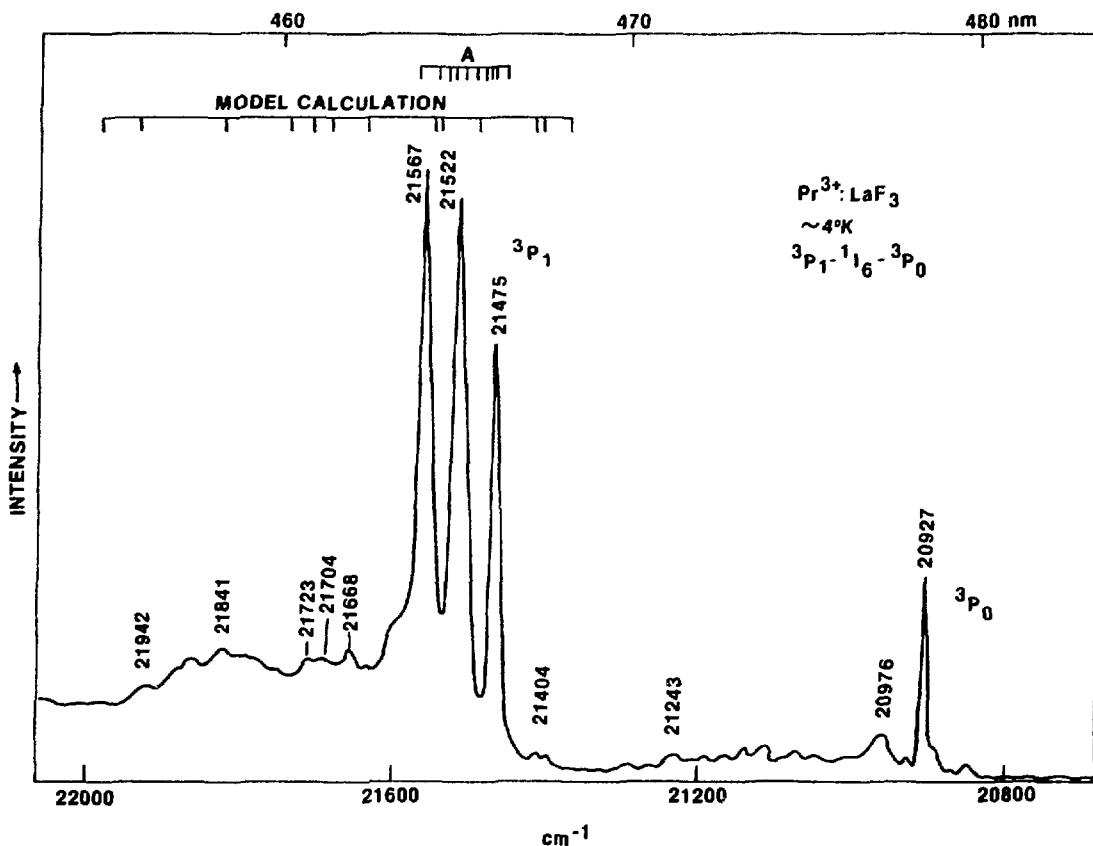



Fig. 3. Comparison of the Experimental Absorption Spectrum of  $\text{Pr}^{3+}:\text{LaF}_3$  with the Model Energy Level Calculation and with a Previous Proposed Interpretation (A. Assignments of Ref. 45) of the Energy Level Structure in the Range  $20800-22000 \text{ cm}^{-1}$  (the  $^3\text{P}_0$ ,  $^1\text{I}_6$  and  $^3\text{P}_1$  States) at  $\sim 4 \text{ K}$ .

those originally assumed.<sup>13</sup> However, the interpretation remains speculative and will hopefully stimulate further experimental activity. In the last section of this report, it is noted that a larger value of  $\alpha$  than that indicated here would be more consistent with apparent systematic trends, but a larger  $\alpha$  shifts the  $^1\text{I}_6$  states to higher energies relative to  $^3\text{P}_1$ .

### 5.3. $\text{Nd}^{3+}:\text{LaF}_3$ ( $4f^3$ )

There are extensive published reports of the structure observed in low-temperature absorption and fluorescence spectra of  $\text{Nd}^{3+}:\text{LaF}_3$ .<sup>6,52-54</sup> Wong, Stafsudd, and Johnston<sup>6</sup> reported a number of polarized absorption

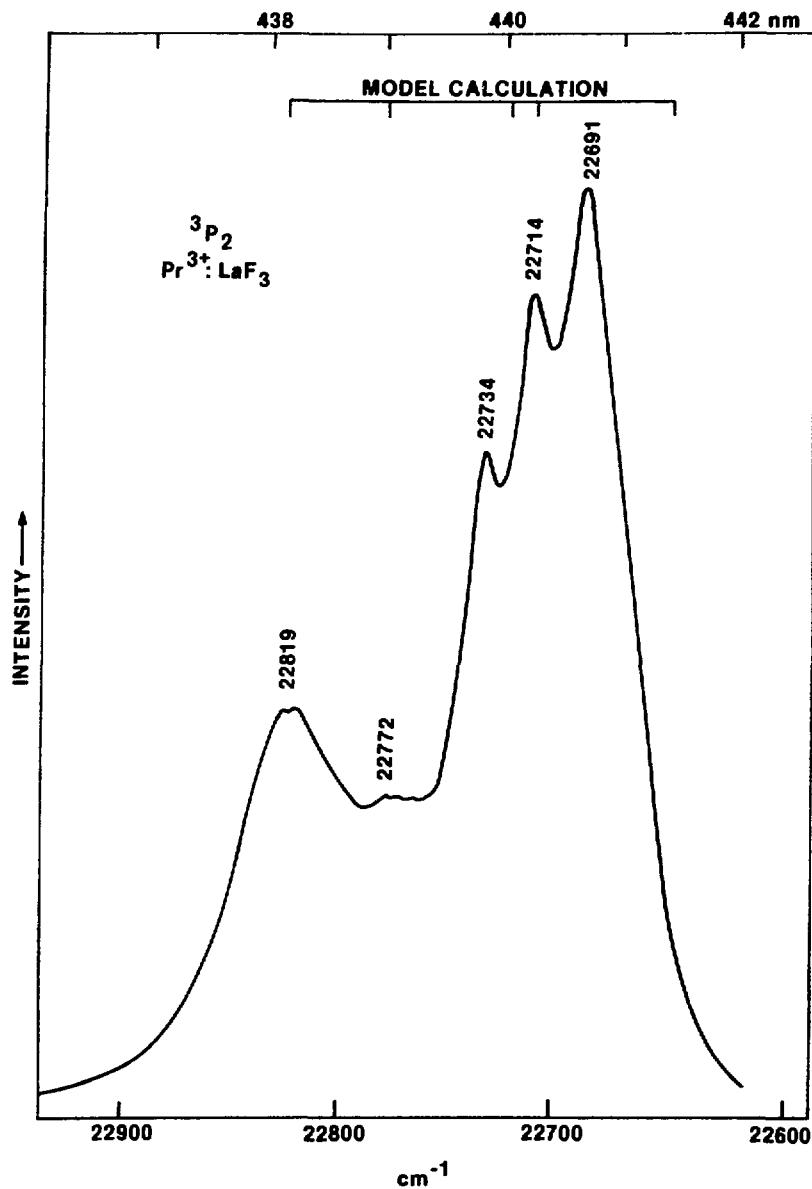



Fig. 4. Comparison of the Experimental Absorption Spectrum of  $\text{Pr}^{3+}:\text{LaF}_3$  with the Model Energy Level Calculation in the Range  $22600-22900 \text{ cm}^{-1}$  (the  $^3\text{P}_2$  State) at  $\sim 4 \text{ K}$ .

lines in the range  $11500-20000 \text{ cm}^{-1}$ , while Caspers, Rast, and Buchanan<sup>52</sup> observed components of most of the atomic states to  $24000 \text{ cm}^{-1}$ . This group also established the energies of the ground and first excited states by fluorescence measurements. These data have been extended by previously unpublished work at ANL<sup>11</sup> to provide a relatively complete set of crystal-field components. Of the 182 levels in the  $f^3$  configuration, 146 have been assigned, Appendix II. The data reported at  $>3000 \text{ cm}^{-1}$  were obtained in the present investigation, and are in good agreement with previously published results. The free-ion structure is consistent with that established in the study of  $\text{Nd}^{3+}:\text{LaCl}_3$ .<sup>55</sup>

As indicated earlier, the observed spectrum of  $\text{Nd}^{3+}:\text{LaF}_3$  is sufficiently extensive to provide an excellent basis for interpretation. Only one  $^2F_{7/2}$  and one  $^2F_{5/2}$  state lie beyond the present range of observation. Thus both the atomic and crystal-field parameters, Table 4, are considered well determined and they became the basis for extrapolation to neighboring ions. The experimental results reported here are based on a reexamination of earlier spectroscopic studies, and thus the line list differs marginally from that given in an earlier report.<sup>11</sup>

#### 5.4. $\text{Pm}^{3+}:\text{LaF}_3$ ( $4f^4$ )

The absorption spectrum of  $\text{Pm}^{3+}:\text{LaF}_3$  has not been reported, but an extensive interpretation of the absorption and fluorescence spectra of  $\text{Pm}^{3+}:\text{LaCl}_3$  has been published.<sup>56</sup> We have used the regularities in the energy level parameters for  $\text{Ln}^{3+}:\text{LaF}_3$  as the basis for interpolation of approximate parameter values for  $\text{Pm}^{3+}:\text{LaF}_3$ , Table 4. The corresponding computed crystal-field levels to  $\sim 25000 \text{ cm}^{-1}$  are given in Appendix III.

#### 5.5. $\text{Sm}^{3+}:\text{LaF}_3$ ( $4f^5$ )

The observation and analysis of the absorption and fluorescence spectra of  $\text{Sm}^{3+}:\text{LaF}_3$  in the range  $0-11000 \text{ cm}^{-1}$  was reported by Rast, Fry, and Caspers,<sup>57</sup> while a line list extending to  $\sim 32000 \text{ cm}^{-1}$  was given by Dieke.<sup>1</sup> The region of the spectrum measured was further extended in the present investigation and a composite tabulation with most of the energy assign-

ments based on work at ANL, is given in Appendix IV. Since the crystal-field structure of  $\text{Sm}^{3+}$  is very extensive, initial assignments were limited to the more isolated groups with the model calculation based on the crystal-field parameters for  $\text{Nd}^{3+}:\text{LaF}_3$ . Intercomparisons of our own and previously published data led to additional assignments consistent with the  $\text{Nd}^{3+}$  model. With  $\text{Sm}^{3+}$ , we are only able to observe ~50% of the total energy range covered by the  $4f^5$ -configuration. Thus the free-ion parameters, Table 4, are considered approximate for the total configuration even though they reproduce the available data quite well. Furthermore, the large number of states for  $\text{Sm}^{3+}:\text{LaF}_3$  required truncation of the energy matrices<sup>41</sup> following a procedure cited in the analysis of the spectrum of  $\text{Pm}^{3+}:\text{LaCl}_3$ .<sup>56</sup> This introduces an error which is in general small, but may amount to several wavenumbers for some levels. Truncation procedures were used for  $f^5$  ( $f^9$ ),  $f^6$  ( $f^8$ ), and  $f^7$  configuration analyses.

### 5.6. $\text{Eu}^{3+}:\text{LaF}_3$ ( $4f^6$ )

Crystals of  $\text{LaF}_3$  doped with  $\text{Eu}^{3+}$  are found to contain some  $\text{Eu}^{2+}$ . The broad intense  $\text{Eu}^{2+}$  bands in the visible-near UV range conceal the  $\text{Eu}^{3+}$  transitions there. Weber<sup>19</sup> observed fluorescence in  $\text{Eu}^{3+}:\text{LaF}_3$  from the excited states  $5D_0$ ,  $5D_1$ ,  $5D_2$ , and  $5D_3$  using pulsed selective excitation, while more detailed measurements in absorption and fluorescence were subsequently reported by Kumar et al.<sup>7</sup> The energy-levels of the  $5D$  and  $7F$  states that can be deduced from the latter measurements are very similar to those reported for  $\text{Eu}^{3+}:\text{LaCl}_3$ .<sup>1</sup>

The experimental results of Kumar et al.<sup>7</sup> included polarization measurements, and the assigned energy levels in the  $7F$  and  $5D$  multiplets were identified by symmetry species assuming a  $C_{2v}$  site-symmetry. The present crystal-field calculations, using the crystal-field parameters for  $\text{Sm}^{3+}:\text{LaF}_3$  as initial values, provide a direct comparison with these assignments. Two reported levels, those at 2847 and  $2894\text{ cm}^{-1}$ , were clearly inconsistent with the initial parameter set. Only a very limited refinement of the parameters could be justified based on the small number of observations; however, variation of  $F^2$ ,  $\zeta$ ,  $B_0^2$ ,  $B_0^4$ , and  $B_0^6$ , with fixed ratios of  $F^4/F^2$  and  $F^6/F^2$  did result in a good fit to the data and param-

eter values consistent with series trends, Table 4 and Appendix V. The crystal-field parameters obtained in this way were, within the errors, the same as those for  $\text{Sm}^{3+}:\text{LaF}_3$ . While the  $^7\text{F}$  and  $^5\text{D}$  states are relatively pure, the eigenvectors of higher-lying states tend to be of mixed character.

The symmetry species associated with the various calculated energy levels for  $\text{C}_{2v}$  symmetry can be deduced from the eigenvectors and the character table for the symmetry group. Table 6 gives these characters for the two-fold rotation about the  $z$  direction ( $\text{C}_{2z}$ ), and the  $xz$  reflection plane ( $\sigma_{xz}$ ), for each of the four symmetry species of the  $\text{C}_{2v}$  point group,  $A_1$ ,  $A_2$ ,  $B_1$  and  $B_2$ . The conventions used here agree with those used by Kumar et al.<sup>7</sup> The eigenfunctions in the crystal-field calculation are specified in terms of basis states of well-defined total angular momentum,  $J$ , and its projection in the  $z$  direction,  $M$ . The effect of  $\text{C}_{2z}$  is to multiply one of these basis states by  $(-1)^M$  and the effect of reflection in the  $xz$  plane is to change the state  $|J M\rangle$  into the state  $|J -M\rangle$  and multiply it by  $(-1)^{J+M+P}$ , where  $P$  is the parity of the state determined by taking the sum of the orbital angular momentum for each electron in the ion of interest. For  $\text{Eu}^{3+}$  with six  $f$  electrons,  $J$  is an integer and  $P$  is even. Thus  $P$  can be ignored in this case.

Only for  $M=0$  does  $M$  remain well defined for the eigenstates in  $\text{C}_{2v}$  symmetry. For other values of  $M$ , the eigenstates contain either the sum or the difference of the basis states corresponding to  $M$  and  $-M$ . If we use

$$|J |M| \text{ plus}\rangle = [|J |M\rangle + |J -|M|\rangle]/\sqrt{2} \text{ and}$$

$$|J |M| \text{ minus}\rangle = [|J |M\rangle - |J -|M|\rangle]/\sqrt{2} \text{ for } M \text{ nonzero,}$$

the remaining three columns of Table 6 allow us to classify the eigenvectors for  $\text{Eu}^{3+}$  according to whether  $|M|$  is even or odd and whether  $J$  is even or odd. This table also gives the correct symmetry for  $M=0$  states by regarding these states as plus states for  $|M|$  even.

Symmetry species for the eigenvectors are included in Appendix V. In all cases the A or B nature of the symmetry species from the experimental assignments and the calculation agrees. Since the eigenvalue calculation

Table 6.  
 Character Table for Each of the four Symmetry Species  
 of the  $C_{2v}$  Point Group

| Species | $C_{2z}$ | $\sigma_{xz}$ | $ M $ | J even | J odd |
|---------|----------|---------------|-------|--------|-------|
| $A_1$   | 1        | 1             | even  | plus   | minus |
| $A_2$   | 1        | -1            | even  | minus  | plus  |
| $B_1$   | -1       | 1             | odd   | minus  | plus  |
| $B_2$   | -1       | -1            | odd   | plus   | minus |

is partitioned into one for  $|M|$  even and another for  $|M|$  odd, this part of the symmetry classification was simple to impose as a constraint on the fit of energy levels. For two levels in the  $^7F_4$  state, the symmetry species  $A_1$  and  $B_1$  could not be distinguished experimentally.<sup>7</sup> Only one choice of assignment consistent with the energy level scheme could be made in each case.

The calculated symmetry species subscript, 1 or 2, is shown in parenthesis in Appendix V if it differs from the experimental assignment. Since the eigenvalue calculation was not partitioned into plus and minus states and thus experimental information about species subscripts was not introduced as a constraint on the fitting, it is not too surprising that half the calculated and experimental species subscripts disagree. This disagreement should be viewed as reminder that our understanding of the electronic structure for rare earth ions in the  $\text{LaF}_3$  lattice is not yet complete with respect to the details of the eigenfunctions of these energy levels.

### 5.7. Er<sup>3+</sup>:LaF<sub>3</sub> (4f<sup>11</sup>)

Analyses of the heavy lanthanides in LaF<sub>3</sub> were developed starting with the analysis of the spectrum of Er<sup>3+</sup>:LaF<sub>3</sub> and working back toward Gd<sup>3+</sup> since the normal light lanthanide ion model for Gd<sup>3+</sup> would have been Eu<sup>3+</sup>-- which is itself poorly established experimentally. Er<sup>3+</sup>:LaF<sub>3</sub> was an excellent reference case because of the extensive spectral range over which measurements could be made. This range included ~ 80% of the free-ion states in the whole configuration.

The absorption and fluorescence spectra of Er<sup>3+</sup>:LaF<sub>3</sub> measured at 77 K, which included levels up to ~ 39500 cm<sup>-1</sup>, were reported by Krupke and Gruber.<sup>58</sup> Several higher-energy transitions were also tentatively identified. A subsequent investigation<sup>59</sup> included measurements at ~ 4 K in the range 6000-50000 cm<sup>-1</sup>. We have made additional spectroscopic measurements at low temperature, so that the levels recorded in Appendix VI represent a composite of published results and in a number of cases a reevaluation of results originally given in Ref. 59. In reviewing our experimental data, a discrepancy in the calibration standards applied to a number of absorption groups originally reported by Carnall, Fields, and Sarup<sup>59</sup> was discovered.<sup>14</sup> In addition, the initial crystal-field calculations, which reproduced the observed structure over the whole of the experimental range, were not consistent with several levels that had previously been identified as crystal-field components. These levels were excluded from further parameter fitting calculations in the present study and assumed to have a vibronic origin. We did not obtain fluorescence spectra; thus the energies of the crystal-field components of the ground term <sup>4</sup>I<sub>15/2</sub> are those reported by Krupke and Gruber.<sup>58</sup> In general the results shown in Appendix VI are in good agreement with the somewhat less extensive data reported by others.<sup>58,60</sup> Several incomplete groups were not assigned in the first refinements of the parameters. For example the <sup>2</sup>K<sub>15/2</sub> state calculated near 27800 cm<sup>-1</sup> was included later because of the excellent agreement between calculated splitting pattern and the observed very weak absorption features in this energy range.

In the case of the <sup>2</sup>G<sub>7/2</sub> group near 28250 cm<sup>-1</sup>, an isolated band at 28338.1 cm<sup>-1</sup> was earlier assigned as one of the crystal-field components,<sup>59</sup>

and we could identify a very weak absorption feature near this energy in our spectra. In contrast, the crystal-field calculations grouped all components of this level within a very narrow energy range ( $\sim 25 \text{ cm}^{-1}$ ) consistent with a single strong absorption feature, and thus suggested that the weak feature arises from some other mechanism.

The character of the spectroscopic features observed in different groups varied considerably. In many instances the features were sharp and intense, but in others a relatively broad band corresponds to a single isolated crystal-field component. The broadening is ascribed to vibronic coupling.

One of the interesting aspects of the  $\text{Er}^{3+}:\text{LaF}_3$  spectrum is the continuing string of isolated free-ion states extending from 0 to  $\sim 28000 \text{ cm}^{-1}$  with major absorption features corresponding to each expected crystal-field component. The extent of the experimental data left little room for more than one interpretation within the systematic framework adopted here.

Examination of the fit to the data in Appendix VI reveals some defects in the energy level calculation. Although the crystal-field splitting of each  $J$ -state is well reproduced, a small constant adjustment for each of the lower energy free-ion groups would considerably improve the agreement with experiment. Thus it appears that the free-ion part of the model is inadequate. The need for corrections is not apparent at higher energies suggesting that the intrinsic purity of the lower-lying states may limit their adjustment by the fitting procedure. Fit values of some parameters that were inconsistent in magnitude with those predicted via extrapolation were amenable to change by the addition of constraints. By holding  $\gamma$  and  $T^2$  constant, the values of  $F^k$  were forced to assume magnitudes consistent with systematic values. Thus the final fit to the data shown in Table 4 is not that recorded in Ref. 14, but one in which the  $F^k$  are more consistent with series trends; however, the energy levels computed with the new parameters were essentially identical to those obtained earlier without the constraints on  $\gamma$  and  $T^2$ .

### 5.8. Tm<sup>3+</sup>:LaF<sub>3</sub> (4f<sup>12</sup>)

Most of the crystal-field components of the various states which occur in the spectrum of Tm<sup>3+</sup>:LaF<sub>3</sub><sup>61</sup> have been identified<sup>13</sup> and are given in Appendix VII. Although considerable structure has been observed, the number of assigned states in the 4f<sup>12</sup>-configuration is not sufficient to adequately determine all the parameters of the theoretical model. Thus trends in parameter values across the series were of importance in the initial calculations. Crystal-field parameters determined for Er<sup>3+</sup>:LaF<sub>3</sub>, together with free-ion parameters for Tm<sup>3+</sup> established earlier,<sup>61</sup> were used to compute a model set of energy levels, Appendix VII.

Transitions between the ground state and excited multiplet states in the 4f<sup>12</sup>-configuration of Tm<sup>3+</sup> all occur in the range 5000-40000 cm<sup>-1</sup>, except for that to <sup>1</sup>S<sub>0</sub>. The energies of the <sup>1</sup>S<sub>0</sub> state and the higher-lying crystal-field components of the ground state have not yet been established by experiment. Model calculations were particularly useful in identifying missing components of some groups and excluding from consideration some of the structure observed in other groups.

Examination of the model crystal-field for the <sup>3</sup>F<sub>4</sub> state revealed a good correspondence with observed transitions with the exception that a level predicted to occur near 5600 cm<sup>-1</sup> had not previously been reported. Additional spectroscopic measurements did reveal a relatively weak isolated band at 5615 cm<sup>-1</sup> consistent with the prediction and obviously overlooked in our earlier work,<sup>61</sup> Fig. 5.

The structure observed in the energy range of the <sup>3</sup>H<sub>5</sub> group was complex but the model calculation provided the basis for a tentative interpretation as indicated in Fig. 6. In this instance it was clear that much of the observed structure could not be attributed to f+f transitions. There is an apparent correlation between the splitting pattern of the three lowest energy transitions in the model calculation and that of the three most intense bands in the group. The complexity of the structure is typical of that observed in other Ln<sup>3+</sup>:LaF<sub>3</sub> configurations and illustrates the value of the model calculation in developing the trial interpretation. The broad band structure observed in the <sup>3</sup>H<sub>5</sub> group is also observed in the <sup>3</sup>H<sub>4</sub> group,



Fig. 5. Comparison of the Experimental Absorption Spectrum of  $Tm^{3+}:LaF_3$  with the Model Energy Level Calculation in the Range  $5600-6000\text{ cm}^{-1}$  (the  $^3F_4$  State) at  $\sim 4\text{ K}$ .

Fig. 7, and similar considerations underlie the suggested interpretations in the two groups.

In the  $^3F_3$  group near  $14550\text{ cm}^{-1}$ , Fig. 8, the predicted narrow band splitting with two close doublets emphasizes the need for a higher resolution spectrum to resolve the structure in this case. The predicted total splitting of the  $^3F_2$  group, Fig. 9, was essentially equal to that for the  $^3F_3$  state, but the agreement of the predicted structure with the details of that observed was particularly good. The broad band character of the spectrum of the  $^1D_2$  group, Fig. 10, is reminiscent of the  $^3P_2$  group of  $Pr^{3+}:LaF_3$ , Fig. 4.

The  $^1I_6$  and  $^3P_1$  groups posed interesting interpretational problems in  $Tm^{3+}$ . As was found in the  $Pr^{3+}$  case, the  $^1I_6$  state in  $Tm^{3+}$  was computed to

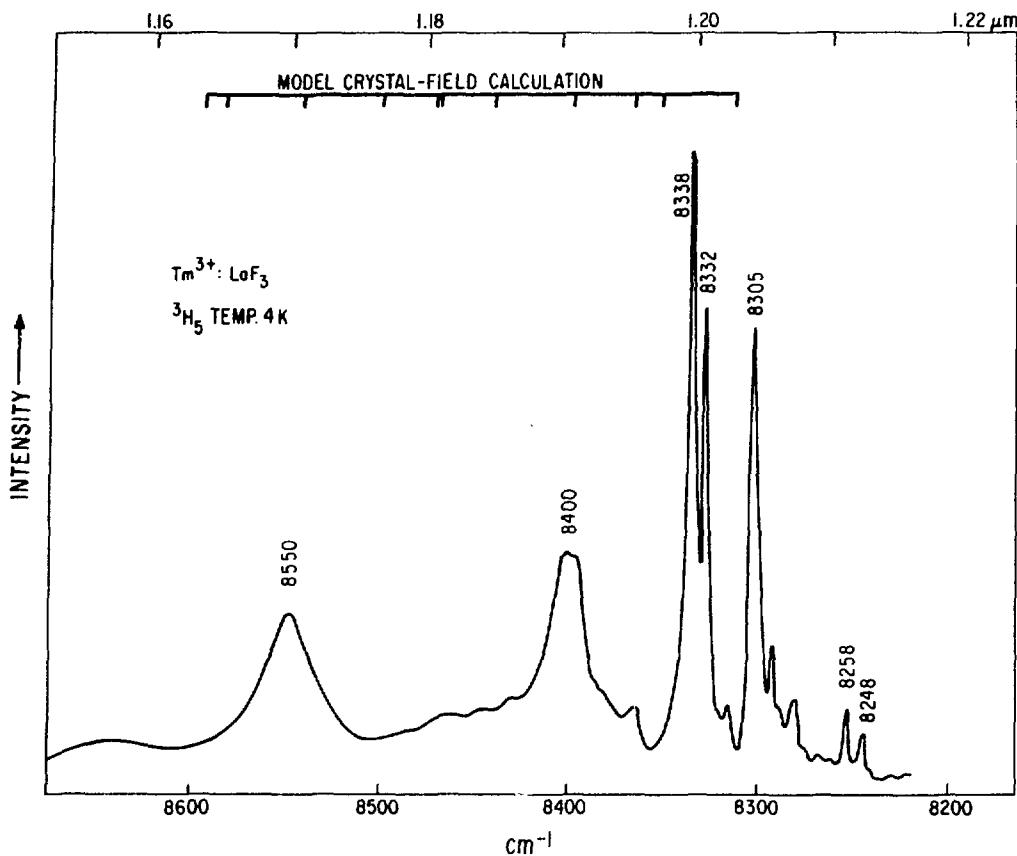



Fig. 6. Comparison of the Experimental Absorption Spectrum of  $\text{Tm}^{3+}:\text{LaF}_3$  with the Model Energy Level Calculation in the Range  $8200-8600 \text{ cm}^{-1}$  (the  $^3\text{H}_5$  State) at  $\sim 4 \text{ K}$ .

have a large total splitting (about  $500 \text{ cm}^{-1}$ ); however, in  $\text{Tm}^{3+}$  the group is isolated in energy from other free-ion groups, Fig. 11. This isolation draws attention to the fact that within an energy range characterized by a large amount of weak structure there are two bands, each with intensities approximately a factor of 10 greater than the average in that range. If we examine the eigenvectors of each component of  $^1\text{I}_6$ , only two components show a triplet character in excess of 1%; levels near  $34769 \text{ cm}^{-1}$  and  $35107 \text{ cm}^{-1}$  are identified with  $^3\text{P}_1$  character of  $\sim 1.5$  and  $1.8\%$ , respectively. Since the intensity is expected to be greatest in those components of  $^1\text{I}_6$  containing the greatest triplet character, this correlation is a further

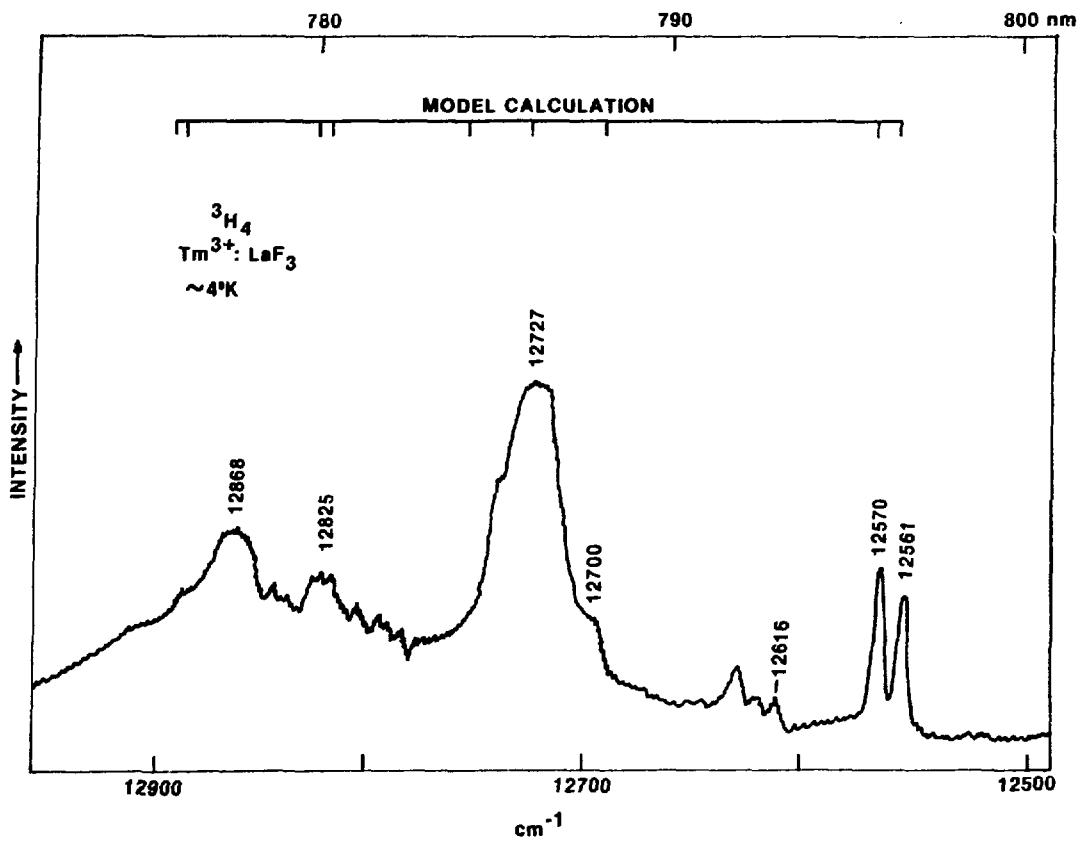



Fig. 7. Comparison of the Experimental Absorption Spectrum of  $\text{Tm}^{3+}:\text{LaF}_3$  with the Model Energy Level Calculation in the Range  $12500\text{--}12900\text{ cm}^{-1}$  (the  $^3\text{H}_4$  State) at  $\sim 4\text{ K}$ .

confirmation of the model calculation. Assignments to two other absorption features can be made consistent with the model, but similar intensity arguments cannot be invoked.

The model predicted that two of the three components of  $^3\text{P}_1$  would be separated by about  $35\text{ cm}^{-1}$ . Since we observed only two relatively intense bands in this region of the spectrum, Fig. 11, in contrast with the three in  $\text{Pr}^{3+}$ , the model can be interpreted as suggesting a close doublet in  $\text{Tm}^{3+}$  which was not resolved in the experimental study. Model calculations also identify the electronic transitions in the  $^3\text{P}_2$  group as distinct from other weaker structure, Fig. 12. We could conclude for  $\text{Tm}^{3+}:\text{LaF}_3$  that all of the

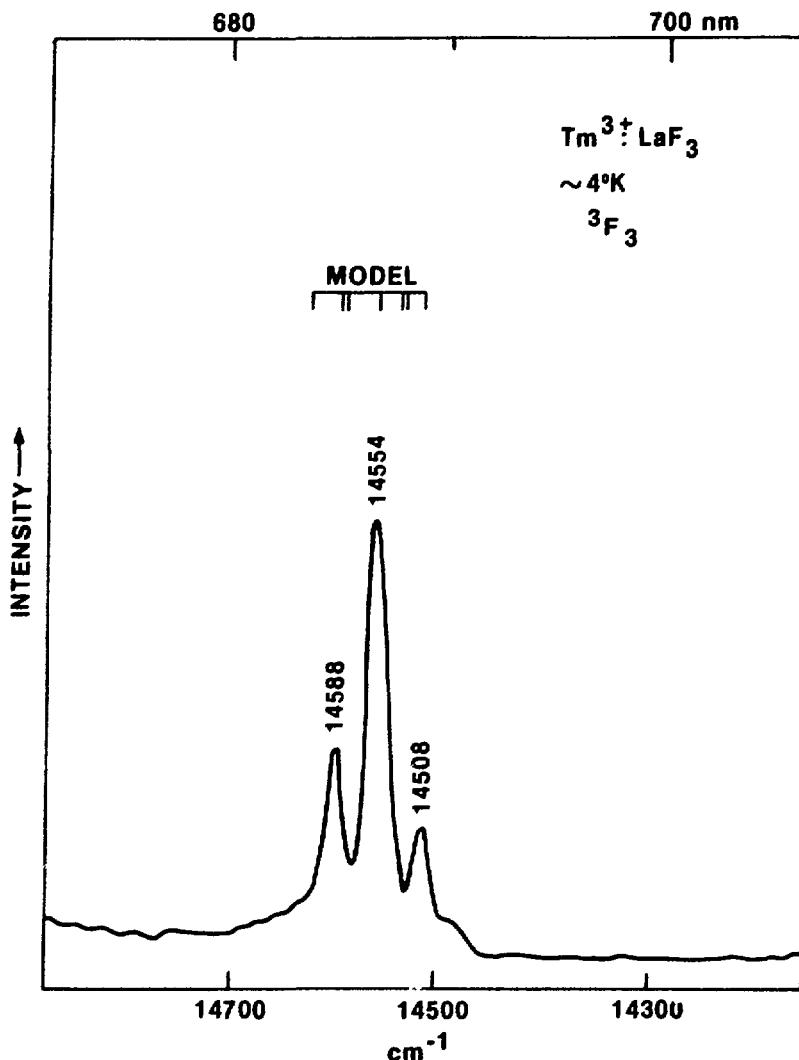



Fig. 8. Comparison of the Experimental Absorption Spectrum of  $Tm^{3+}:LaF_3$  with the Model Energy Level Calculation in the Range  $14300-14700\text{ cm}^{-1}$  (the  $^3F_3$  State) at  $\sim 4\text{ K}$ .

experimental results were consistent with the  $Er^{3+}:LaF_3$  model crystal-field.

In the final determination of the parameters, the value of  $T^2$  was not well determined and thus was assigned consistent with observed parameter trends. Since the  $^1S_0$  state was not observed, a similar lack of sensitivity was found for  $\gamma$ , and it was also assigned a fixed value. The parameter values are given in Table 4.

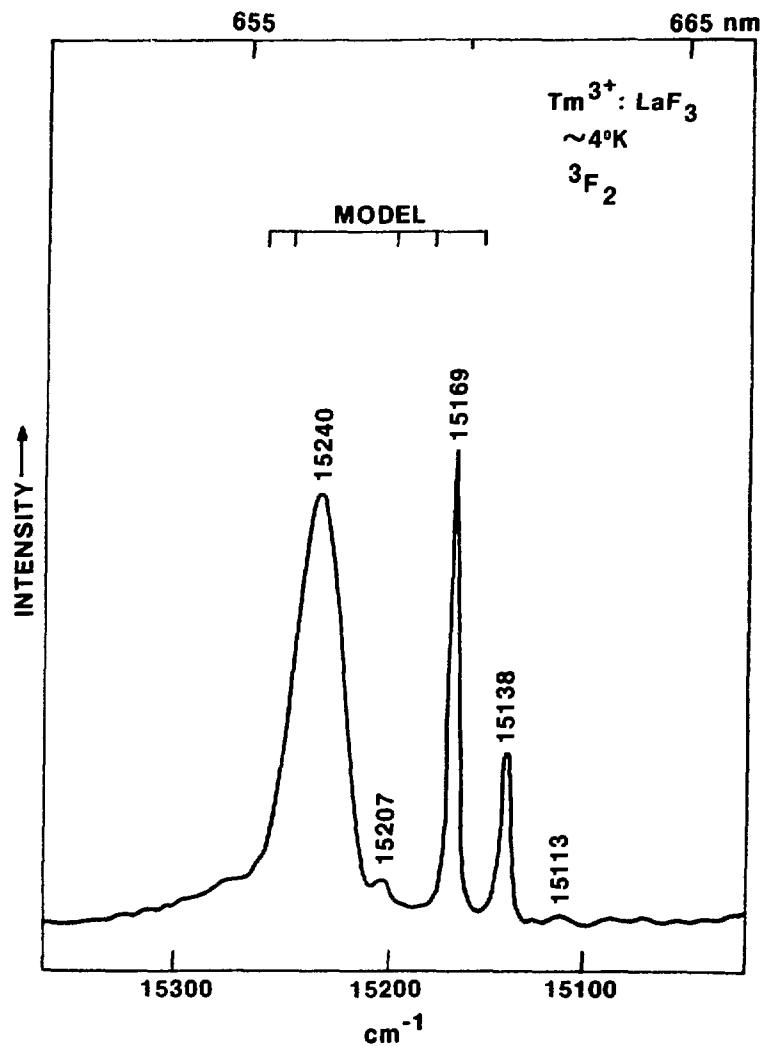



Fig. 9. Comparison of the Experimental Absorption Spectrum of  $\text{Tm}^{3+}:\text{LaF}_3$  with the Model Energy Level Calculation in the Range  $15100-15300 \text{ cm}^{-1}$  (the  $^3F_2$  State) at  $\sim 4 \text{ K}$ .

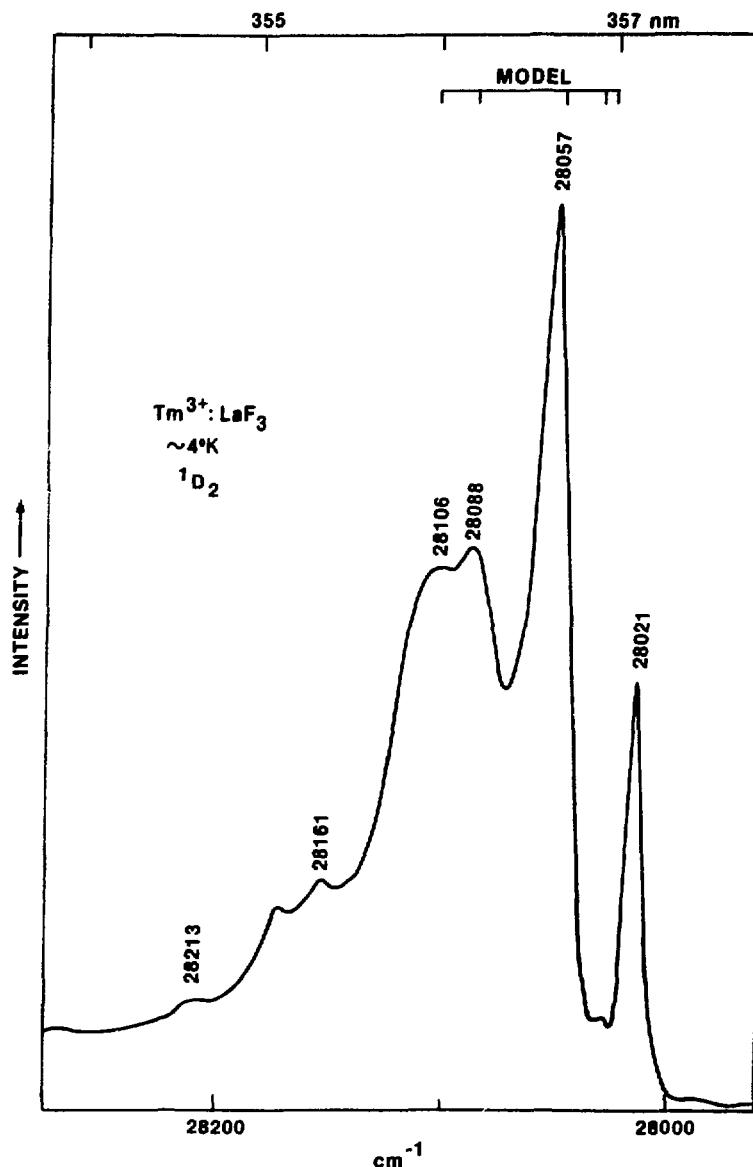
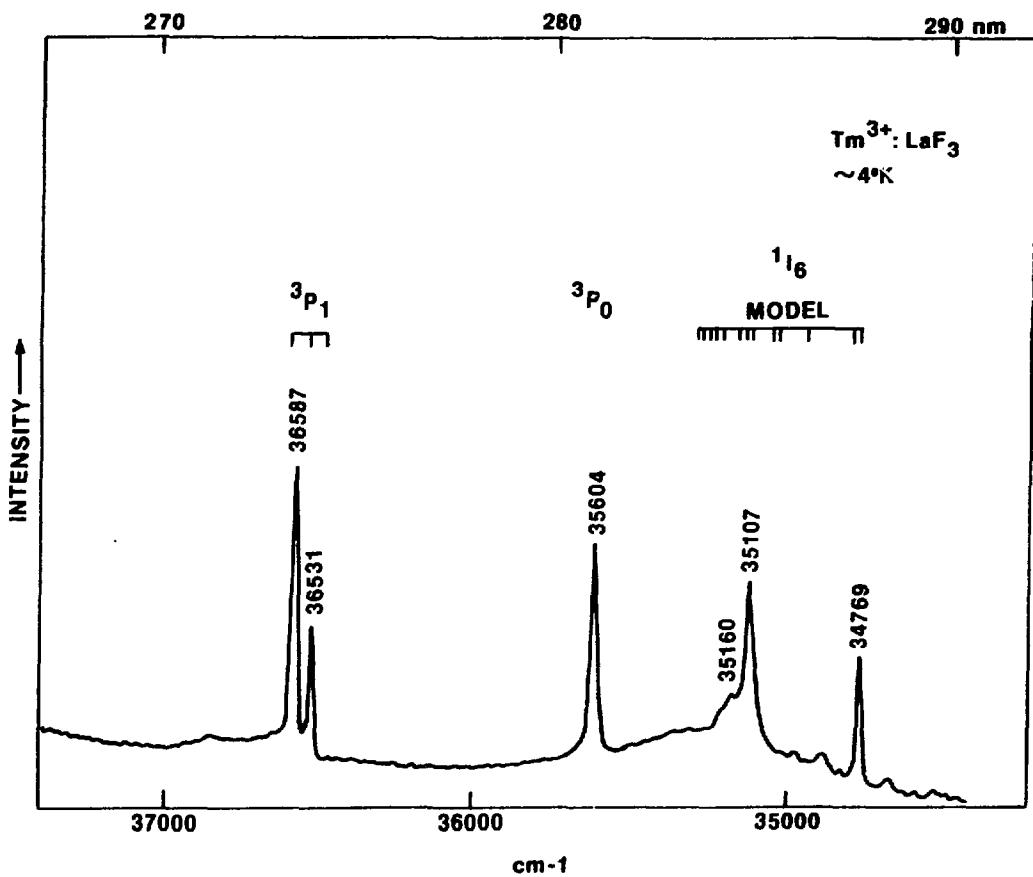




Fig. 10. Comparison of the Experimental Absorption Spectrum of  $\text{Tm}^{3+}:\text{LaF}_3$  with the Model Energy Level Calculation in the Range  $28000-28200 \text{ cm}^{-1}$  (the  $^1\text{D}_2$  State) at  $\sim 4 \text{ K}$ .



**Fig. 11.** Comparison of the Experimental Absorption Spectrum of  $Tm^{3+}: LaF_3$  with the Model Energy Level Calculation in the Range  $34500-37000\text{ cm}^{-1}$  (the  $1I_6$ ,  $3P_0$ , and  $3P_1$  States) at  $\sim 4\text{ K}$ .

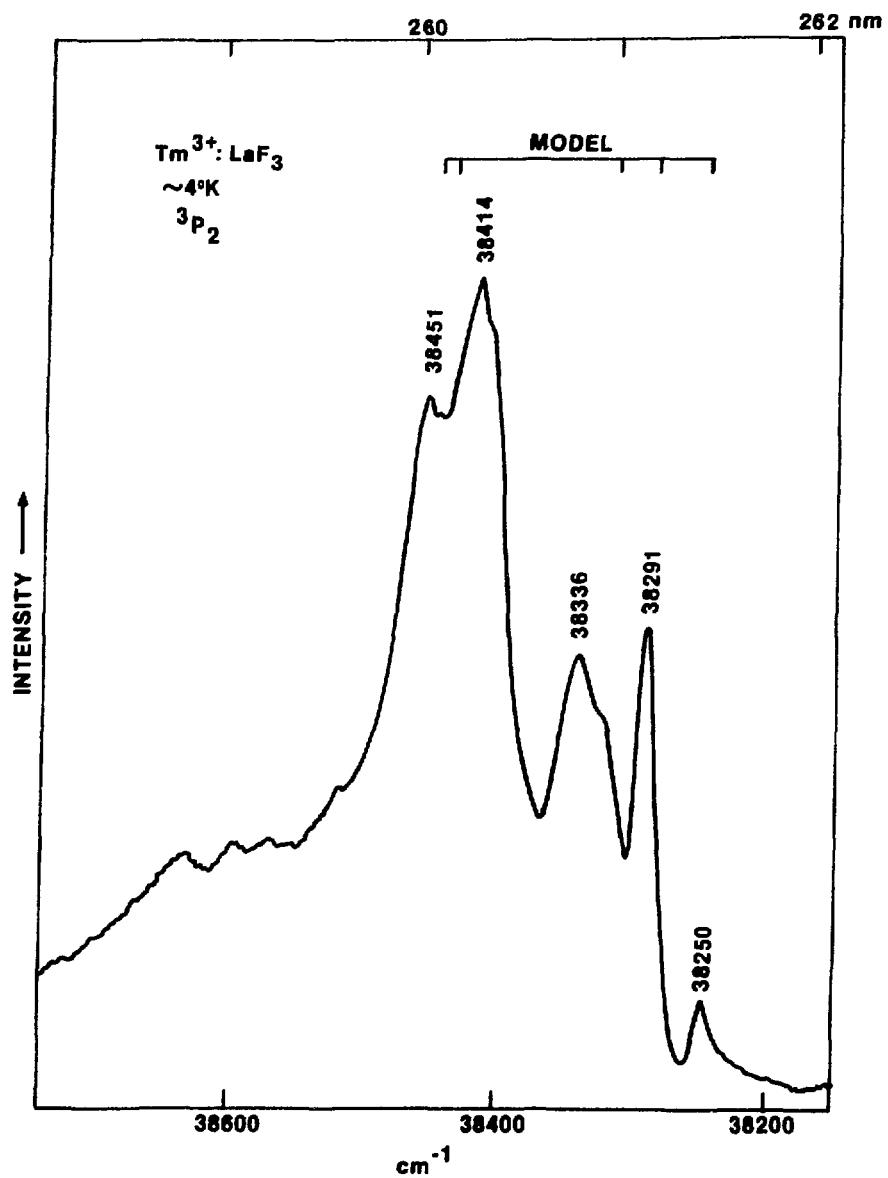



Fig. 12. Comparison of the Experimental Absorption Spectrum of  $\text{Tm}^{3+}:\text{LaF}_3$  with the Model Energy Level Calculation in the Range  $34500-37000 \text{ cm}^{-1}$  (the  $^1\text{I}_6$ ,  $^3\text{P}_6$ , and  $^3\text{P}_1$  States) at  $\sim 4 \text{ K}$ .

### 5.9. $\text{Ho}^{3+}:\text{LaF}_3$ ( $4f^{10}$ )

An extensive investigation of the absorption and fluorescence spectra of  $\text{Ho}^{3+}:\text{LaF}_3$  has been reported by Caspers, Rast, and Fry (CRF).<sup>62</sup> Our additional experiments confirmed the published data, but only slightly extended the number of states that could be assigned,<sup>14</sup> Appendix VIII. In many cases, the number of observed components of atomic states was less than that allowed theoretically based on  $C_2$  site symmetry, but the baricenters of these components appear to provide the basis for calculation of a consistent set of energy-level parameters. The experimental level energies shown in Appendix VIII are similar to those reported for  $\text{Ho}^{3+}:\text{LaCl}_3$ .<sup>63</sup>

Following the preliminary energy level calculation for the  $\text{Ho}^{3+}:\text{LaF}_3$  system with approximate free-ion parameters and the crystal-field parameters derived for  $\text{Er}^{3+}:\text{LaF}_3$  assuming  $C_{2v}$  site symmetry, there was obvious excellent correlation between the predicted pattern of crystal-field components in isolated groups and the measured spectra. In addition, there were numerous levels computed to be essentially degenerate in energy, thus predicting that the spectrum should appear somewhat less congested than might have been expected.

Interpretation of the absorption spectrum was complicated by the existence of a ground state crystal-field component at  $4.5 \text{ cm}^{-1}$ . This level appeared as a satellite on the majority of the bands we observed at 4 K. Most of our results correlated fully with the extensive data reported by CRF who did perform measurements at  $\sim 1.5$  K, where the  $4.5 \text{ cm}^{-1}$  state was not significantly populated. In Appendix VIII we only report levels from the tabulation of Ref. 62 for which corresponding features could be found in our spectra,<sup>14</sup> or where there was some evidence that our observations might have been limited by resolution. However, the actual values cited are primarily those from Table 1 of Ref. 62. While the  $4.5 \text{ cm}^{-1}$  satellite in our spectra limited our resolution of structure in some cases, it also provided a check on the identification of electronic transitions.

We did not use the fluorescence-supplemented results given in Table III of Ref. 62 except for the ground state. An example of the problem in identifying crystal-field levels without the benefit of crystal-

field calculations is illustrated in comparing the results in Appendix VIII, and those tabulated in Table III of Ref. 62 for the  $^5I_7$  state, Figs. 13 and 14. Comparison of the spectrum shown in Fig. 14 with the energies given in Appendix VIII suggests that not all the predicted bands are observed, but in part this may be ascribed to a number of nearly degenerate energy levels. There is, however, agreement between the structure observed in absorption and that computed in that the total splitting of the state is  $\sim 5307 - 5192 = 115 \text{ cm}^{-1}$ . Thus, the extra levels ( $Y_{11} - Y_{15}$  in Table III of CRF), Fig. 13, observed only in fluorescence, are assumed to be incorrectly assigned to the  $^5I_7$  state. CRF were suspicious of these levels, but had no basis for excluding them.

In contrast to the observation of fewer transitions than might have been expected to the  $^5F_7$  state, CRF detected a number of levels, probably vibronic in origin, near  $15610 \text{ cm}^{-1}$  where the model calculation placed a single level for the  $^5F_5$  state. One of the striking examples of excellent agreement between experiment and model calculation was obtained in the case of the  $^3K_8$  state near  $21400 \text{ cm}^{-1}$  where all but one of the possible  $2J + 1 = 17$  components could be correlated with observed absorption features. This group in  $\text{Ho}^{3+}:\text{LaCl}_3$  is experimentally complete, but assignments guided by polarization and Zeeman data led to large discrepancies between observed and computed level energies. In addition, the experimental energy span of the group was  $121 \text{ cm}^{-1}$  compared to a computed value of only  $70 \text{ cm}^{-1}$ .<sup>63</sup> No such discrepancies were noted in the present study. Although polarization and Zeeman affect data were not available for guidance, the model calculation based on  $\text{Er}^{3+}:\text{LaF}_3$  did predict the observed pattern of electronic levels.

One of the characteristics of the  $\text{Ho}^{3+}:\text{LaF}_3$  data that lends itself to the type of analysis discussed here is the relative isolation of so many states throughout the spectrum. The stronger general absorption observed at  $> 39000 \text{ cm}^{-1}$  was probably due to  $\text{Ce}^{3+}$  impurity in the  $\text{LaF}_3$ .

In the final analysis, 128 levels served to define the energy level parameters in  $\text{Ho}^{3+}:\text{LaCl}_3$ ,<sup>63</sup> compared to 204 in the present case. There are clear differences in the values for  $\gamma$  and in some of the  $T^k$  in the two cases, but these parameters are not independent of the  $F^k$  which are also larger for  $\text{Ho}^{3+}:\text{LaF}_3$ . In the analysis of the  $\text{Ho}^{3+}:\text{LaCl}_3$  spectrum, some

residual problems in the fit were attributed to the crystal-field part of the Hamiltonian. In  $\text{Ho}^{3+}:\text{LaF}_3$  the preliminary and final crystal-field parameters, except for  $B_0^2$ , were similar, and resembled closely the values obtained via lattice sum calculation.<sup>12</sup> For reasons we could not discern, when allowed to vary freely,  $B_0^2$  assumed a value of about half of that expected from trends in the series. Assignment of the value  $240 \text{ cm}^{-1}$  did

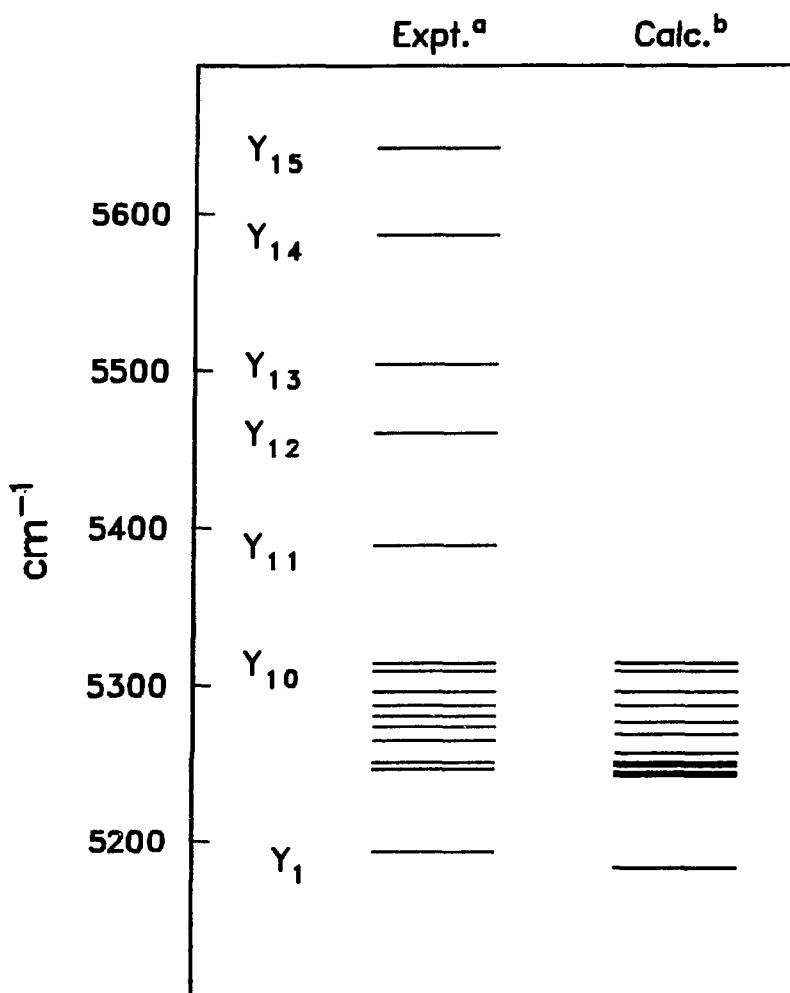



Fig. 13. Comparison of the Experimentally Observed and Model Computed Crystal-field Levels for the  $^5\text{I}_7$  State of  $\text{Ho}^{3+}:\text{LaF}_3$ : (a) From Ref. 62, Table III, (b) Computed Levels from Appen. VIII.

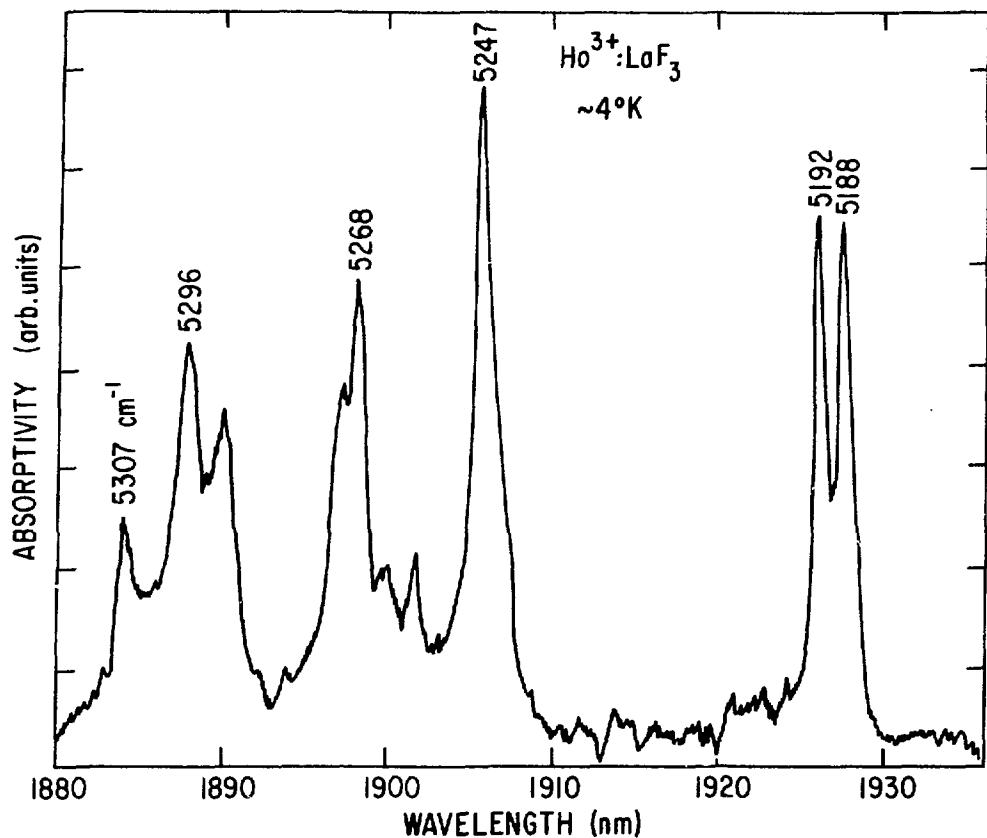



Fig. 14. Absorption Spectrum of  $\text{Ho}^{3+}:\text{LaF}_3$  at  $\sim 4$  K in the Range 1880-1930 nm

not appear to perturb any of the other parameters, Table 4. Similarly, series-inconsistent values of  $\gamma$  and  $T^2$  were obtained when these parameters were free.

#### 5.10. $\text{Dy}^{3+}:\text{LaF}_3$ (4f<sup>9</sup>)

Absorption and fluorescence spectra of  $\text{Dy}^{3+}:\text{LaF}_3$  including levels up to  $\sim 32000$   $\text{cm}^{-1}$  have been reported.<sup>11,15,64</sup> The results presented in Appendix IX at  $>5800$   $\text{cm}^{-1}$  represent for the most part observations made in the present investigation. They are nearly identical to those reported earlier<sup>64</sup> where the two sets overlap. In a few instances where weak bands were reported in the literature consistent with the computed structure but not observed in the present work, the entry was included in the line list.

The initial adjustment of atomic and crystal-field parameters was based on assignments made to isolated groups of levels, and final parameters are given in Table 4. Many of the assignments included all the expected crystal-field components of a particular state. Assignments to regions of extensive structure were only made after all parameter values were already well established.<sup>15</sup>

### 5.11. Tb<sup>3+</sup>:LaF<sub>3</sub> (4f<sup>8</sup>)

The spectrum of Tb<sup>3+</sup> in single-crystal TbF<sub>3</sub> has been studied in absorption and fluorescence by Krupka and Guggenheim.<sup>65</sup> From this data the centers of gravity of the <sup>5</sup>D<sub>4</sub> and the ground term <sup>7</sup>F multiplet components could be computed consistent with an earlier analysis of Tb<sup>3+</sup>:LaCl<sub>3</sub>.<sup>1</sup> However, the crystal symmetry is not that of Tb<sup>3+</sup>:LaF<sub>3</sub>. SmF<sub>3</sub> and heavier lanthanides crystallize in the orthorhombic YF<sub>3</sub> structure.<sup>25</sup> Experimental spectroscopic results for Tb<sup>3+</sup>:LaF<sub>3</sub> do not appear to have been analysed previously. Considering the complexity of the spectrum this is understandable. The energies of the crystal-field levels assigned in the present investigation<sup>16</sup> are included in Appendix X together with a computed energy level scheme based on parameters given in Table 4.

The absorption spectrum of Tb<sup>3+</sup>:LaF<sub>3</sub> represents a particularly challenging case for energy level structure analysis. Most of the band structure we observed was in the 26000-40000 cm<sup>-1</sup> range. At higher energies the transitions in our ~ 1% doped crystals were too weak to be observed in absorption. Since the <sup>7</sup>F<sub>6</sub>-ground state is a very pure septet, and the amount of septet character in the higher energy states, (>6000 cm<sup>-1</sup>), decreases rapidly, weaker transitions are expected at higher energies. Both the low intensity and high density of levels have been cited as problems in interpreting the spectrum of Tb<sup>3+</sup>:LaCl<sub>3</sub> where "safe" crystal-field analysis<sup>1</sup> did not extend above ~26000 cm<sup>-1</sup>. A summary of free-ion states of Tb<sup>3+</sup> consistent with the present results has been reported.<sup>66</sup>

Since only a fraction of the 4f<sup>6</sup>-configuration is found at <40000 cm<sup>-1</sup>, it is not surprising that the F<sup>k</sup> parameters are not well established by the existing data. A number of constraints were adopted to

yield a parameter set that did provide an excellent correlation between observed and computed level energies, Table 4, and was consistent with systematic trends in parameter values.

### 5.12. Gd<sup>3+</sup>:LaF<sub>3</sub> (4f<sup>7</sup>)

The energy levels of the <sup>6</sup>P and <sup>6</sup>I groups in Gd<sup>3+</sup>:LaF<sub>3</sub> have been reported by Caspers et al.<sup>67</sup> and by Schwiesow and Crosswhite.<sup>68</sup> These experimental results were subsequently extended to include the <sup>6</sup>D and <sup>6</sup>G crystal-field states in the 40000–50000 cm<sup>-1</sup> range.<sup>69</sup> The data recorded in Appendix XI are a composite of the results published in Ref. 68 and 69.

A crystal-field analysis of the spectrum of Gd<sup>3+</sup>:LaF<sub>3</sub> to ~37000 cm<sup>-1</sup> demonstrated that good agreement with the optical measurements could be achieved by assuming a hexagonal site symmetry.<sup>11,68</sup> We have only recently attempted to analyze all of the available data via a complete free-ion and crystal-field matrix element diagonalization in C<sub>2v</sub> symmetry.<sup>16</sup> An obvious problem in such an analysis lies in having experimental results for such a small fraction of the whole configuration. This was also encountered in Tb<sup>3+</sup>:LaF<sub>3</sub>, but is even more evident in the present case. The actual errors determined in the fitting procedure are deceptively low because they are established by the correlation between assigned and observed levels, not by what in principle should be included in the fit.

To begin the analysis, a preliminary set of crystal-field parameters for Tb<sup>3+</sup> was combined with a previously established set of free-ion parameters for Gd<sup>3+</sup>:LaF<sub>3</sub>,<sup>69</sup> to provide the basis for a model calculation. In each free-ion group, all deviations of the model-computed levels from observed band energies were less than 12 cm<sup>-1</sup>, for assignments in the range 32000–49250 cm<sup>-1</sup>.<sup>16</sup> Further adjustment in parameters was therefore restricted to the free-ion set. Several of the latter were not well determined when they were freely varied, but fixing values consistent with systematic trends maintained an overall excellent agreement between observed transition and computed level energies. In the final parameter fitting, with additional experimental levels near 50000 cm<sup>-1</sup> included, only seven free-ion parameters were freely varied as shown in Table 4.

Although the data set is even smaller for  $\text{Eu}^{3+}:\text{LaF}_3$ , comparison of its crystal-field parameters with those for  $\text{Tb}^{3+}:\text{LaF}_3$  reveal distinct differences, particularly in the sixth degree terms, Table 4. However, when the crystal-field parameters of  $\text{Eu}^{3+}:\text{LaF}_3$  were combined with the free-ion parameters of  $\text{Gd}^{3+}$ , the resulting fit to the observed crystal-field structure in  $\text{Gd}^{3+}:\text{LaF}_3$  was also very good, with  $\sigma = 11 \text{ cm}^{-1}$ . As was already revealed by the difference between our crystal-field parameter set for  $\text{Gd}^{3+}:\text{LaF}_3$  in  $D_{3h}$  symmetry<sup>11</sup> and that of Schweisow and Crosswhite,<sup>68</sup> both quite adequately reproducing the available experimental data, more than one parameter set in  $D_{3h}$  symmetry can be found to yield a satisfactory correlation with experiment. This is clearly the case in  $C_{2v}$  symmetry too.

The difficulties posed for crystal-field theory, when dealing with the interpretation of ground-state splitting in ions having a half-filled shell, are well known. As a result of the special properties of the  $4f^7$  configuration, first-order crystal-field matrix elements vanish and any explanation of observed splittings of the ground or excited states must involve at least second or higher order crystal-field interactions.<sup>3</sup> Wybourne's exposition of the situation and examination of possible mechanisms is still a valid statement of the problem.<sup>70</sup> For the lanthanides, the ordering of the crystal-field components in the ground state is dependent on the sign of  $B_0^2$ , and is  $\pm 7/2$ ,  $\pm 5/2$ ,  $\pm 3/2$ ,  $\pm 1/2$  with  $\pm 7/2$  calculated lowest in energy for  $+ B_0^2$ . A positive sign for  $B_0^2$  appears to be consistent with EPR results for  $\text{Gd}^{3+}$  in  $\text{LaF}_3$ <sup>71</sup> and in fluorozirconate glass,<sup>72</sup> and also in agreement with the crystal-field analysis assuming  $D_{3h}$  site symmetry.<sup>11</sup> It has been pointed out that the crystal-field splitting of the ground state for  $\text{Gd}^{3+}$ -containing crystals is too small to have actually been observed by optical spectroscopy.<sup>73</sup>

Both the EPR results for  $\text{Gd}^{3+}:\text{LaF}_3$  and lattice sum calculations for  $\text{LaF}_3$ ,<sup>12</sup> emphasize that the sign of  $B_0^2$  depends on the details of the site symmetry, as indicated in Table 2. In the present treatment of the optical spectra of  $\text{Ln}^{3+}:\text{LaF}_3$ , the crystal-field parameter sets that have provided a systematic correlation of the experimental data are based on an assumed approximate  $C_{2v}$  symmetry and have a negative  $B_0^2$  term. However, as pointed out earlier, this choice had a practical basis. If, instead of the approximate  $C_{2v}$  symmetry we were to use  $C_2$  symmetry, the results of Table 2 sug-

gest that alternate sets of crystal-field parameters, one with  $+B_0^2$ , the other with  $-B_0^2$ , depending on whether the z-axis is taken parallel or perpendicular to the crystal c axis, could be determined to give equally good representations of the actual data.

### 5.13. Yb<sup>3+</sup>:LaF<sub>3</sub> (4f<sup>13</sup>)

Classification and analysis of lines assigned to the fourth spectrum of atomic Yb, Yb IV, places the  $^2F_{7/2} - ^2F_{5/2}$  ground term interval at  $10214.0 \text{ cm}^{-1}$ .<sup>74</sup> This yields a value of the spin-orbit coupling constant of  $2918 \text{ cm}^{-1}$ . Rast and co-workers<sup>75</sup> observed both the absorption and fluorescence spectra of Yb<sup>3+</sup>:LaF<sub>3</sub>, and interpreted their results, consistent with those for Yb IV, as indicating levels of  $^2F_{5/2}$  at 10260, 10430, and  $10660 \text{ cm}^{-1}$ . Two excited levels belonging to the ground  $^2F_{7/2}$  state were placed at 185 and  $401 \text{ cm}^{-1}$ , leaving one level unidentified. The electronic structure exhibited by Yb<sup>3+</sup> in several different hosts has been summarized by Dieke,<sup>1</sup> with generally similar crystal-field splitting patterns to that reported for Yb<sup>3+</sup>:LaF<sub>3</sub>. The computed energy-level scheme, Table 7, using crystal-field parameters for Tm<sup>3+</sup>:LaF<sub>3</sub>, Table 4, provided the basis for interpretation of the experimental results. The correlation of computed energies for the ground  $^2F_{7/2}$  state with the two reported states suggests that a low energy state near  $50 \text{ cm}^{-1}$  has not been observed. The fact that both absorption to and fluorescence from a level near  $10260 \text{ cm}^{-1}$  have been observed indicates that this is undoubtedly the lowest energy crystal-field component of the  $^2F_{5/2}$  excited state. We have confirmed the existence of levels at 10260 and  $10430 \text{ cm}^{-1}$  by measuring the spectrum of 1% Yb<sup>3+</sup>:LaF<sub>3</sub>. Strong sharp bands were observed at both energies. However, no clear evidence was obtained for a band near  $10660 \text{ cm}^{-1}$ . As pointed out by Rast et al., there is a broad shoulder to the higher energy side of the  $10430 \text{ cm}^{-1}$  band. In the absence of clear evidence for an electronic transition superimposed on this shoulder, we have not made an assignment. However, the model calculation does place a level in the  $10450-10750 \text{ cm}^{-1}$  energy range. The limited data set precluded variation of the crystal-field parameters; only  $\zeta$  was determined.

Table 7.  
Experimental and Computed Energy Level Structure for  $\text{Yb}^{3+}:\text{LaF}_3$

| SLJ<br>State       | Obs. <sup>a</sup><br>( $\text{cm}^{-1}$ ) | Calc. <sup>b</sup><br>( $\text{cm}^{-1}$ ) | O-C |
|--------------------|-------------------------------------------|--------------------------------------------|-----|
| $^2\text{F}_{7/2}$ | 0                                         | 26                                         | -26 |
|                    | -                                         | 78                                         |     |
|                    | 185                                       | 178                                        | 7   |
|                    | 401                                       | 382                                        | 19  |
| $^2\text{F}_{5/2}$ | 10260                                     | 10301                                      | -41 |
|                    | 430                                       | 389                                        | 41  |
|                    | (660) <sup>c</sup>                        | 571                                        |     |

<sup>a</sup>Ref. 75 ( $\text{cm}^{-1}$  vac).

<sup>b</sup>Parameter values are given in Table 4.

<sup>c</sup>Not included in the parameter fitting.

## 6.0 SYSTEMATIC TRENDS

Developing a systematic set of atomic and crystal-field energy level parameters for the lanthanides doped into  $\text{LaF}_3$  has been an evolutionary process. In the work reported here, each lanthanide was initially treated independently with as many of the parameters of the model varied as could be well established from the available data base before any intercomparison along the series was attempted. In all cases, the subsequent imposition of constraints to preserve what appeared to be systematic trends in parameter values, could be made without any significant change in the goodness of fit to the experimental levels. Thus to a large extent the constraints were imposed on parameters that turned out to be relatively insensitive to the available experimental data base.

The free-ion parameters in  $\text{Ln}^{3+}:\text{LaF}_3$  were expected to approach those obtained in the few analyzed gaseous free-ion investigations. In fact, for  $\text{Pr}^{3+}:\text{LaF}_3$  the  $F^k$  values are 96-97% of those for Pr IV, while the values of  $\zeta$  for  $\text{Ce}^{3+}$ ,  $\text{Pr}^{3+}$  and  $\text{Yb}^{3+}:\text{LaF}_3$  are respectively 93, 98, and 100% of the corresponding gaseous free-ion values.<sup>41</sup> It was found that extremely good fits to experimental data could be obtained with nearly constant values over the series for some parameters, but trends in other parameters were evident.

### 6.1. Atomic (free-ion) Parametrization

The systematic variations of the  $F^k$  and  $\zeta$  for  $\text{Ln}^{3+}:\text{LaF}_3$  as a function of  $N$  are shown in Fig. 15. For comparison, we include a comparable set for  $\text{Ln}^{3+}:\text{LaCl}_3$ <sup>10</sup> using a scale which is offset from that for the  $\text{Ln}^{3+}:\text{LaF}_3$ . The actual values of the parameters in the two series are similar, and the parameter values plotted for  $\text{Ln}^{3+}:\text{LaCl}_3$  are given in Table 8.

It has been pointed out that comparison of  $F^k$  and  $\zeta$  calculated using ab initio methods with values of these integrals established by fitting experimental data, results in energy differences, i.e.,  $E(\text{HFR}) - E(\text{EXPT}) = \Delta E$  which tend to show a constancy over the series that can be useful for purposes of extrapolation.<sup>10,41</sup> Computations of the  $F^k$  and  $\zeta$  with a Hartree-Fock program containing an approximate relativistic correction (HFR),<sup>40,41</sup> are given in Table 9. The differences,  $\Delta E$ , for  $\text{Ln}^{3+}:\text{LaF}_3$  are plotted in Fig. 16. Near the center of the series, when  $F^4$  and/or  $F^6$  were freely varied and assumed values that were clearly distorted compared to the trends established by other members of the series, we required that the ratios  $F^4/F^2$  and/or  $F^6/F^2$  remain fixed. This limited both the number of parameters varied and the range of values allowed.

Although the HFR ratios  $F^4/F^2$  and  $F^6/F^2$  are nearly constant across the series,  $0.6275 \pm 0.0005$  and  $0.4515 \pm 0.0005$ , respectively, the values resulting from fitting the  $F^k$  parameters do show distinct but relatively uniform changes. For  $F^4/F^2$  the ratio decreases from 0.731 for  $\text{Pr}^{3+}:\text{LaF}_3$  to 0.695 for  $\text{Tm}^{3+}:\text{LaF}_3$ , whereas for  $F^6/F^2$  the ratio increased from 0.478 for  $\text{Pr}^{3+}:\text{LaF}_3$  to 0.559 for  $\text{Tm}^{3+}:\text{LaF}_3$ . Thus when requiring fixed ratios of

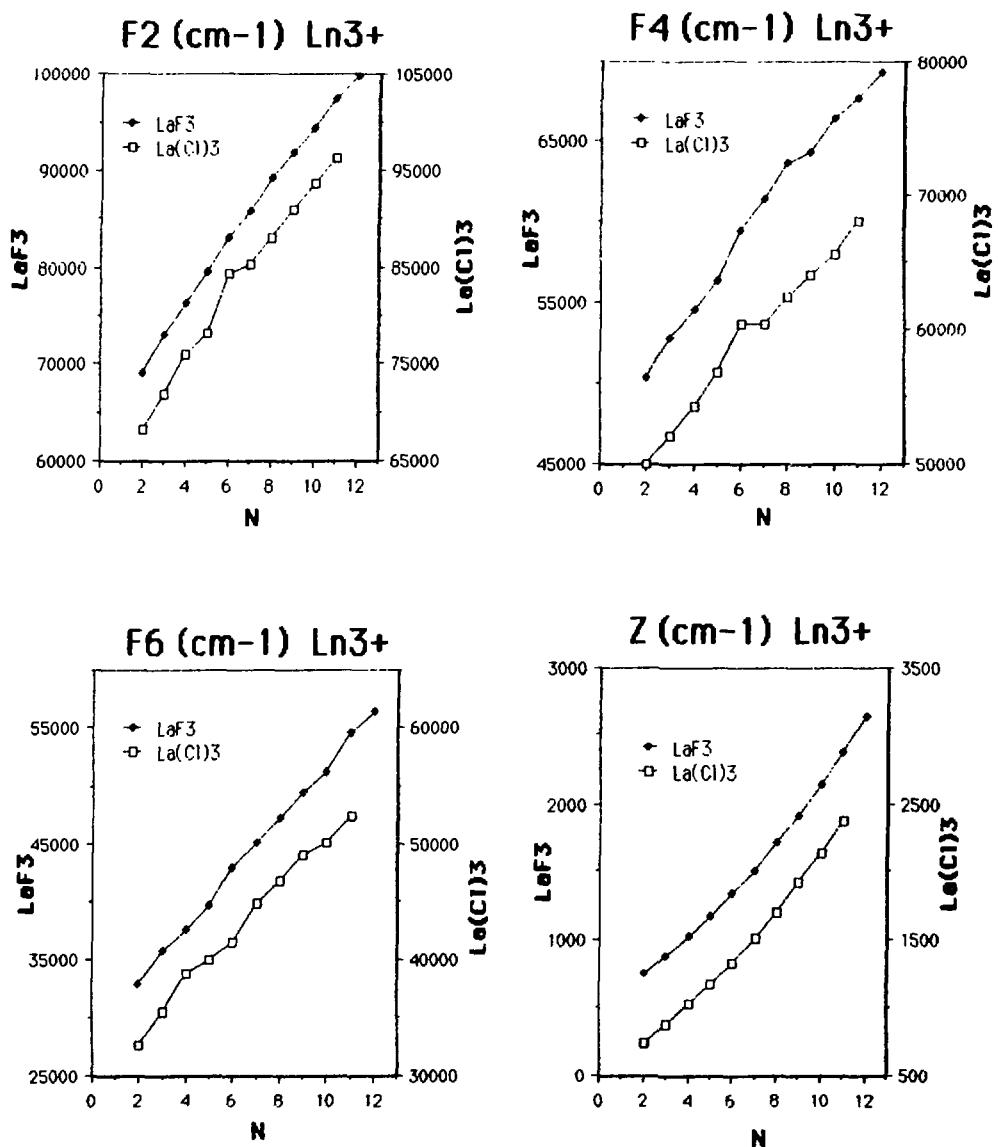



Fig. 15. Variation of the Parameters  $F^2$ ,  $F^4$ ,  $F^6$ , and Zeta (in  $\text{cm}^{-1}$ ) for both  $\text{Ln}^{3+}:\text{LaF}_3$  and  $\text{Ln}^{3+}:\text{LaCl}_3$  as a Function of the Number of f-electrons (N).

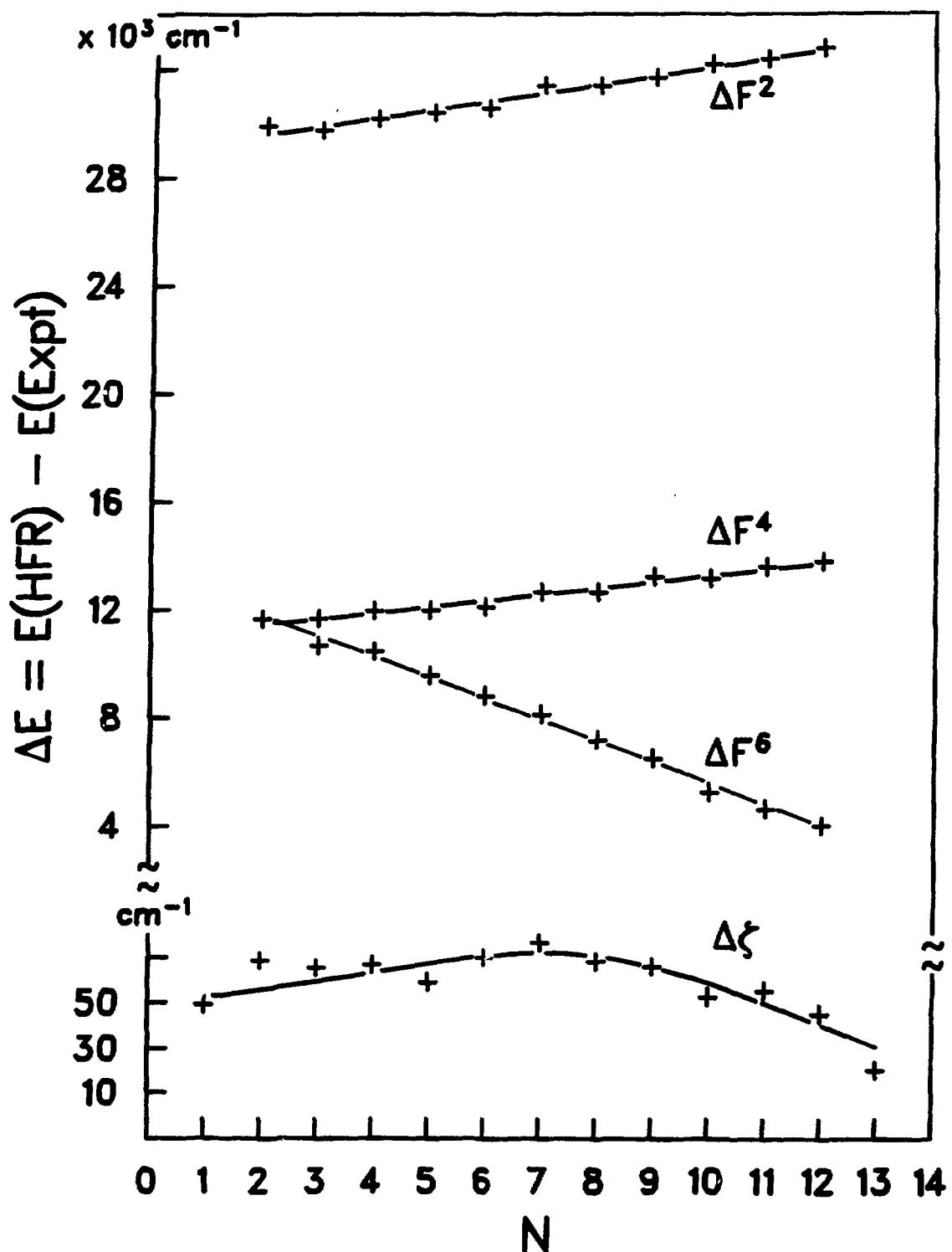



Fig. 16. Variation of the Energy Difference,  $\Delta E = E(\text{HFR}) - E(\text{EXPT})$ , between the HFR Computed Energy and That Determined from Experimental Data as a Function of Number of f-electrons

TABLE 8.  
Energy Level Parameters for  $\text{Ln}^{3+}:\text{LaCl}_3$ <sup>a</sup>

| Ln | $F^2$  | $F^4$  | $F^6$  | alpha | beta   | gamma | $T^2$ |
|----|--------|--------|--------|-------|--------|-------|-------|
| Pr | 68368. | 50008. | 32743. | 22.90 | -674.0 | 1453. | 0.    |
| Nd | 71866. | 52132. | 35473. | 22.10 | -650.0 | 1586. | 377.  |
| Pm | 75808. | 54348. | 38824. | 21.00 | -645.0 | 1425. | 302   |
| Sm | 78125. | 56809. | 40091. | 21.60 | -724.0 | 1700. | 291.  |
| Eu | 84399. | 60343. | 41600. | 16.80 | -640.0 | 1750. | 370.  |
| Gd | 85200. | 60399. | 44874. | 19.00 | -643.0 | 1644. | 315.  |
| Tb | 87988. | 62384. | 46782. | 17.50 | -630.0 | 1880. | 340.  |
| Dy | 90899. | 63922. | 49053. | 17.20 | -622.0 | 1881. | 311.  |
| Ho | 93680. | 65523. | 50104. | 17.20 | -621.0 | 2092. | 300.  |
| Er | 96417. | 67932. | 52467. | 15.90 | -632.0 | 2017. | 300.  |

<sup>a</sup>These parameters were adapted from Ref. 10. The values for  $N=2-7$  were not modified, but those for  $N=8-11$  were transformed following the normalization discussed in Ref. 63 to be consistent with the present results for  $\text{Ln}^{3+}:\text{LaF}_3$ .

$F^4/F^2$  or  $F^6/F^2$ , it is necessary to recognize the variation of the ratios across the series.

While the changes in  $\Delta F^2$  and  $\Delta F^4$  over the series are small enough to be treated as essentially constant over a limited range of  $N$ , this is a much less satisfactory assumption for  $\Delta F^6$ . In addition, the slope of  $\Delta F^6$  is opposite to that of  $\Delta F^2$  and  $\Delta F^4$ . There appears to be no basis to have expected the indicated behavior. When we reexamined the data for

Table 9.  
HFR Integrals for Ln IV<sup>a</sup> (cm<sup>-1</sup>)

|       |                  | F <sup>2</sup> | F <sup>4</sup> | F <sup>6</sup> | ζ       | M <sup>0</sup> | M <sup>2</sup> | M <sup>4</sup> |
|-------|------------------|----------------|----------------|----------------|---------|----------------|----------------|----------------|
| Ce IV | 4f <sup>1</sup>  | -              | -              | -              | 696.41  | -              | -              | -              |
| Pr IV | 4f <sup>2</sup>  | 98723          | 61937          | 44564          | 820.22  | 1.991          | 1.110          | 0.752          |
| Nd IV | 4f <sup>3</sup>  | 102720         | 64462          | 46386          | 950.51  | 2.237          | 1.248          | 0.846          |
| Pm IV | 4f <sup>4</sup>  | 106520         | 66856          | 48111          | 1091.46 | 2.492          | 1.391          | 0.943          |
| Sm IV | 4f <sup>5</sup>  | 110157         | 69143          | 49758          | 1234.60 | 2.756          | 1.540          | 1.044          |
| Eu IV | 4f <sup>6</sup>  | 113663         | 71373          | 51342          | 1407.71 | 3.031          | 1.694          | 1.149          |
| Gd IV | 4f <sup>7</sup>  | 117058         | 73470          | 52873          | 1584.45 | 3.318          | 1.855          | 1.258          |
| Tb IV | 4f <sup>8</sup>  | 120366         | 75541          | 54361          | 1774.46 | 3.615          | 2.022          | 1.372          |
| Dy IV | 4f <sup>9</sup>  | 123592         | 77558          | 55810          | 1978.44 | 3.924          | 2.195          | 1.490          |
| Ho IV | 4f <sup>10</sup> | 126751         | 79530          | 57227          | 2197.06 | 4.246          | 2.376          | 1.612          |
| Er IV | 4f <sup>11</sup> | 129850         | 81462          | 58615          | 2431.00 | 4.580          | 2.563          | 1.739          |
| Tm IV | 4f <sup>12</sup> | 132897         | 83361          | 59978          | 2680.97 | 4.928          | 2.758          | 1.872          |
| Yb IV | 4f <sup>13</sup> | -              | -              | -              | 2947.69 | -              | -              | -              |

<sup>a</sup>These calculations were made using a version of a Hartree-Fock program written by Fischer<sup>29</sup> and adapted for use at Argonne by M. Wilson to contain an approximate correction for relativistic contraction of s-electron orbitals, Cowan and Griffin.<sup>40</sup> We designate this version as HFR, Crosswhite and Crosswhite.<sup>41</sup>

$\text{Ln}^{3+}:\text{LaCl}_3$ ,<sup>10,11,14</sup> we found perhaps less distinct but certainly similar evidence for a negative slope in  $\Delta F^6$ . The greater magnitude of the slope for  $k=6$  compared to  $k=2$  or  $4$  places a much greater limit on the range over which  $\Delta E$  values can be assumed to be constant.

It was possible to fit a cubic equation,  $\zeta(\text{cm}^{-1}) = 528.606 + 104.116 N + 4.2069 N^2 + 0.1467 N^3$ , to the curve for  $\zeta(\text{Ln}^{3+}:\text{LaF}_3)$  shown in Fig. 15. This equation yields  $\zeta(\text{cm}^{-1}) = 637$  and  $2915$  for  $\text{Ce}^{3+}$  and  $\text{Yb}^{3+}$ , respectively, compared to experimental values of  $647$  and  $2928 \text{ cm}^{-1}$ . A similar plot of  $\zeta(\text{HFR})$  can also be fit by a cubic equation, but the mismatch in the two curves shown by the plot of  $\Delta\zeta$  in Figure 16 results in a maximum near  $N=7$ , with decreasing mismatch at both  $N>7$  and  $N<7$ . Predictions from the energy difference  $\zeta(\text{HFR}) - \zeta(\text{EXPT}) = \Delta\zeta$  with  $\Delta\zeta$  averaged over the series,  $623$  and  $2892 \text{ cm}^{-1}$  for  $\text{Ce}^{3+}$  and  $\text{Yb}^{3+}$ , respectively, are satisfactory as an approximation.

Some of the principal effects of configuration interaction were added to the Hamiltonian in the form of two- and three-body operators that operate wholly within the  $f^N$  configuration. The two-body electrostatic corrections  $\alpha$  and  $\beta$  for  $\text{Ln}^{3+}:\text{LaF}_3$  show relatively little variation over the series, but appear to decrease with increasing  $N$ , while  $\gamma$  appears to exhibit a slow increase, Fig. 17. As mentioned earlier in the discussion of experimental results for  $\text{Pr}^{3+}:\text{LaF}_3$ , the apparent systematic trends indicate that  $\alpha$  should be  $>16$ . This would argue against our suggested interpretation of the energies of the  $^1\text{I}_6$  group components.

The behavior of  $T^2$  seems to parallel  $\gamma$ , but other  $T^i$  are essentially constant. Since these additional operators, in the form they were introduced, were not orthogonal to those associated with the  $F^k$  operators, their inclusion results in changes in the values taken by the original  $F^k$  appearing in Eqn. (3). Judd and coworkers have shown that these changes can be avoided if the problem is reformulated in terms of orthogonalized operators.<sup>76,77</sup> The transformation equations are those given in Eq. 9 of Ref. 76 for  $f^3$  except that the expression for the orthogonalized Racah parameter  $E_0^3$  becomes  $E_0^3 - 2\alpha/5 + (N-2)\sqrt{2} T^2/140$ .<sup>78</sup>

In the initial stages of the investigation, when we were attempting to define the two- and three-body operators, it would have been useful to

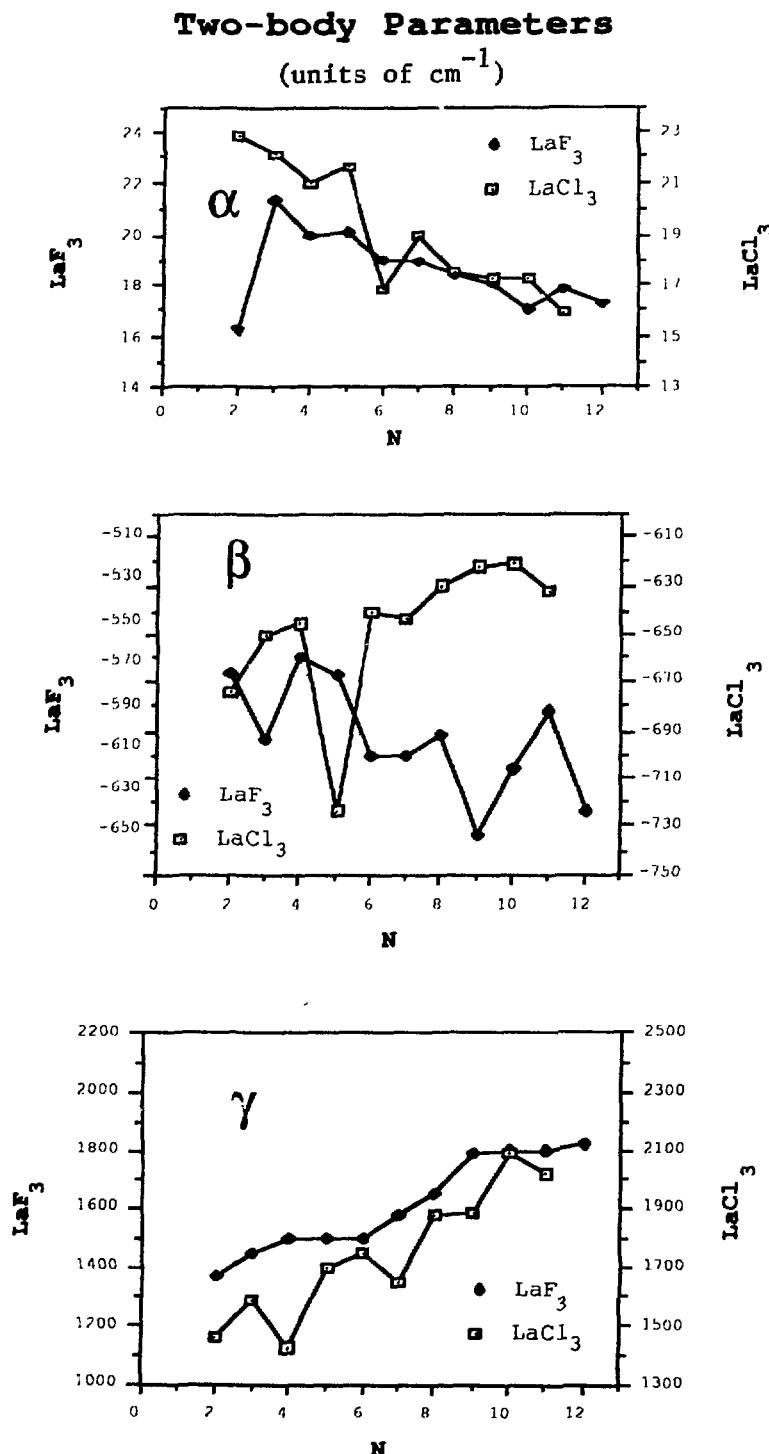



Fig. 17. Variation of the Parameters  $\alpha$ ,  $\beta$ , and  $\gamma$  ( $\text{cm}^{-1}$ ) for  $\text{Ln}^{3+}:\text{LaF}_3$  and  $\text{Ln}^{3+}:\text{LaCl}_3$  as a Function of Number of f-electrons ( $N$ ).

approach the problem via the orthogonal operators. However at this point we have satisfactorily defined all parameters. In Table 10, we give the orthogonalized parameters transformed from the values given in Table 4, and showing similar trends. Scatter in the parameter values appears to arise from the limited data available for some ions and some inadequacy of the Hamiltonian used rather than from the nonorthogonality of the operators.

Several different conventions have been suggested for introducing  $H_{ss}$  (spin-spin),  $H_{soo}$  (spin-other-orbit), and electrostatically correlated spin-orbit (EL-SO) interaction, into the analysis of f-electron systems. We adopted the use of the parameters  $M^0$ ,  $M^2$ , and  $M^4$ , for  $K_{ss}$  and  $H_{soo}$  and found, as did Judd et al.,<sup>37</sup> that when freely varied the values tended to be poorly determined. Since there were significant shifts in the values of  $M^h$  depending upon the values of  $P^f$ , it appears to be useful to vary both sets simultaneously. Pasternak and Goldschmidt have stressed the necessity for including all spin-dependent parameters in the analysis of  $3d^N$ -configurations.<sup>79</sup> A reasonable course of action for the  $M^h$  is to use ratios for  $M^2/M^0$  (= 0.56) and  $M^4/M^0$  (= 0.38) that result from Hartree-Fock calculations, Table 9, allowing only  $M^0$  to vary freely.<sup>41</sup> From the evidence we have assembled, this appears to be a better choice than either fixing  $M^h$  at actual Hartree-Fock calculated values, which are indeed approximated by the actual fit values, or setting the ratios noted above at unity.

The situation with respect to limiting the number of  $P^f$  parameters freely varied is more complicated than for the  $M^h$ . Since the mechanism of the EL-SO interaction involves a product of spin-orbit and electrostatic matrix elements, ratios of the  $P^f$  identical to the ratios of the  $F^k$  have been used for the lanthanides  $F^4/F^2 \sim .7$  and  $F^4/F^2 \sim .5$ .<sup>41</sup> However, when Judd and coworkers used experimental results for Pr IV ( $4f^2$ ) as the basis for determining values of the  $P^f$ , they found that when freely varied,  $P^2$  and  $P^4$  were indeterminate, and  $P^6$  assumed a large negative value.<sup>37</sup> It was speculated that  $P^6$  might, in fact, be reproducing effects such as the expansion of the 4f eigenfunction as the energy is increased, suggesting that large negative contributions to  $P^6$  could arise if interactions with the continuum were considered.

TABLE 10.  
Orthogonalized Energy Level Parameters for  $\text{Ln}^{3+}:\text{LaF}_3$

| Ln | $F_o^2$ | $F_o^4$ | $F_o^6$ | alpha' | beta' | gamma' | $T^2$ |
|----|---------|---------|---------|--------|-------|--------|-------|
| Pr | 68758.  | 50672.  | 34405.  | 12.98  | 29.5  | 98.    | 0.    |
| Nd | 72988.  | 53251.  | 37251.  | 17.07  | 13.5  | 110.   | 298.  |
| Pr | 76578.  | 55581.  | 38843.  | 16.40  | 11.3  | 113.   | 300.  |
| Sm | 80172.  | 58043.  | 41047.  | 16.13  | 13.8  | 114.   | 300.  |
| Eu | 83671.  | 60307.  | 43019.  | 16.13  | 13.8  | 114.   | 300.  |
| Gd | 86427.  | 62076.  | 44856.  | 15.14  | 24.3  | 116.   | 300.  |
| Tb | 90031.  | 64463.  | 46882.  | 14.72  | 24.9  | 122.   | 320.  |
| Dy | 93197.  | 66198.  | 48629.  | 14.42  | 33.5  | 130.   | 329.  |
| Ho | 96415.  | 68763.  | 50225.  | 13.72  | 32.7  | 131.   | 400.  |
| Er | 99565.  | 70504.  | 51812.  | 14.23  | 25.9  | 134.   | 400.  |
| Tm | 102461. | 72439.  | 53287.  | 13.81  | 35.0  | 132.   | 400.  |

During the present investigation, when the  $P^f$  parameters were fit to data for  $\text{Er}^{3+}:\text{LaF}_3$ , we obtained a statistically determined positive value for  $P^2$ , an indeterminate value for  $P^4$  and a determined negative value for  $P^6$  that was equal in magnitude to that of  $P^2$ . For  $\text{Nd}^{3+}:\text{LaF}_3$ , when allowed to freely vary, the values of  $P^f$  were all statistically determined, but  $P^2 \approx -P^6$ . We found that in a fit of data for Pr III ( $4f^3$ )<sup>80</sup> as was the case for Pr IV, the value of  $P^6$  was well determined but negative. We include the data for Pr III in Table 11 for reference.

When the  $P^f$  were varied freely and the  $M^h$  were varied in ratio or held constant, the values for  $P^6$  became positive for  $\text{Ln}^{3+}:\text{LaF}_3$  nearer the center of the series, but  $P^4$  remained indeterminate and there was little change in the error whether the  $P^k$  were varied in ratio or varied freely. Since the  $M^h$  and  $P^f$  values do interact, we chose a modified convention. The parameter  $P^2$  was varied freely while  $P^4$  and  $P^6$  were constrained by the ratios,

$P^4/P^2 = 0.5$  and  $P^6/P^2 = 0.1$ . Thus, we have deemphasized  $P^6$  with the knowledge that it assumes negative values at the beginning and at the end of the series when it is allowed to vary freely. Using the indicated constraints, only in the fit of  $\text{Pr}^{3+}$ , Table 4, did  $P^2$  assume a negative value. Over the series, the constraints adopted resulted in minor change in the value of  $M^0$ , and a reasonably uniform increase in  $P^2$  with increasing atomic number in the light half of the series but less overall change in the heavier lanthanides.

It is clear that the relative values of the  $P^f$  require further investigation to find a mechanism which can account for the unusual behavior of  $P^6$ . That is beyond the scope of this work. However, it is unlikely that the ratios adopted here have caused a significant distortion of the overall results, although there may be individual groups of levels that would be better fit with a different convention than we have adopted.

### 6.2. Crystal-field Parametrization

While the practice of treating the effects of the crystalline field on a lanthanide ion by supplementing the free-ion Hamiltonian with a sum of single-electron operators, Eqn. (6), has generally yielded a very good correlation with experimental results, some exceptions, such as the  $^3K_8$  group of  $\text{Ho}^{3+}:\text{LaCl}_3$ , and the  $^1D_2$  state of  $\text{Pr}^{3+}:\text{LaCl}_3$ , have been recognized, and methods of improving the model have been explored.<sup>81-84</sup>

The effect of the crystalline environment is to reduce the magnitude of the free-ion parameters, but in the case of  $4f^2$  we see that this reduction is relatively small as we compare values of  $F^k$  and  $\zeta$  for  $\text{Pr}^{IV}$ <sup>41</sup> and  $\text{Pr}^{3+}:\text{LaF}_3$ . The reduction is larger if we compare the  $\text{Pr}^{3+}:\text{LaCl}_3$  case.<sup>10</sup> Some of the difficulties that arose in fitting crystal-field levels in  $\text{Ln}^{3+}:\text{LaCl}_3$  ( $D_{3h}$ -symmetry) were not apparent in fitting the corresponding groups in the  $\text{LaF}_3$  host. However, one must recognize that for  $\text{LaF}_3$  we deal with a 9 parameter crystal-field model compared to 4 parameters for  $D_{3h}$ -symmetry, and thus there is considerably more flexibility in the lower symmetry parametrization. Given the fact that Zeeman or polarization data are not normally useful in identifying crystal-field components in the

TABLE 11.  
Free-ion Energy Levels and Parameters for Pr III (4f<sup>3</sup>)<sup>a</sup>

| Largest <sup>b</sup><br>Eigen. Component | obs.<br>(cm <sup>-1</sup> ) | calc.<br>(cm <sup>-1</sup> ) | Δ   | Largest <sup>b</sup><br>Eigen. Component | obs.<br>(cm <sup>-1</sup> ) | calc.<br>(cm <sup>-1</sup> ) | Δ   |
|------------------------------------------|-----------------------------|------------------------------|-----|------------------------------------------|-----------------------------|------------------------------|-----|
| 0.986 $^4I_{9/2}$                        | 0.0                         | -11                          | 11  | -0.989 $^2D_{15/2}$                      | 19046.09                    | 19045                        | 16  |
| 0.995 $^4I_{11/2}$                       | 1398.34                     | 1390                         | 8   | 0.721 $^2P_{3/2}$                        | 20856.86                    | 20842                        | -15 |
| 0.998 $^4I_{13/2}$                       | 2893.14                     | 2896                         | -3  | 0.910 $^4D_{3/2}$                        | 23091.70                    | 23105                        | -13 |
| 0.995 $^4I_{15/2}$                       | 4453.76                     | 4476                         | -22 | 0.889 $^4D_{5/2}$                        | 23245.99                    | 23253                        | -7  |
| 0.973 $^4F_{3/2}$                        | 9370.66                     | 9371                         | 0   | 0.977 $^4D_{1/2}$                        | 23465.43                    | 23470                        | -5  |
| -0.774 $^2H_{9/2}$                       | 10032.92                    | 10022                        | 11  | -0.918 $^2I_{11/2}$                      | 24357.98                    | 24382                        | -24 |
| 0.989 $^4F_{5/2}$                        | 10138.18                    | 10138                        | 0   | 0.992 $^4D_{7/2}$                        | 24886.51                    | 24864                        | 22  |
| -0.966 $^4F_{7/2}$                       | 10859.06                    | 10860                        | -1  | 0.984 $^2L_{15/2}$                       | 25244.61                    | 25258                        | -13 |
| 0.975 $^4S_{3/2}$                        | 10950.24                    | 10949                        | 1   | -0.996 $^2I_{13/2}$                      | 25391.75                    | 25392                        | 0   |
| -0.886 $^4F_{9/2}$                       | 11761.69                    | 11760                        | 2   | 1.0 $^2L_{17/2}$                         | 26477.88                    | 26448                        | 35  |
| 0.903 $^2H_{9/2}$                        | 12494.63                    | 12520                        | -25 | 0.899 $^2D_{23/2}$                       | 26921.49                    | 26930                        | -9  |
| 0.639 $^2G_{17/2}$                       | 13887.60                    | 13890                        | -2  | 0.934 $^2H_{19/2}$                       | 27178.80                    | 27163                        | 16  |
| -0.993 $^4G_{5/2}$                       | 14187.35                    | 14194                        | -7  | -0.766 $^2D_{25/2}$                      | 27597.13                    | 27598                        | -1  |
| 0.870 $^4G_{7/2}$                        | 15443.48                    | 15446                        | -3  | -0.834 $^2H_{11/2}$                      | 28101.77                    | 28134                        | -32 |
| -0.721 $^4G_{9/2}$                       | 15705.13                    | 15696                        | 9   | -0.648 $^2F_{25/2}$                      | -                           | 30563                        | -   |
| 0.994 $^2K_{13/2}$                       | 16089.14                    | 16097                        | -8  | 0.779 $^2F_{27/2}$                       | 31787.93                    | 31790                        | -2  |
| -0.678 $^4G_{9/2}$                       | 16763.98                    | 16750                        | 14  | 0.763 $^2G_{29/2}$                       | 39225.60                    | 39216                        | 10  |
| 0.699 $^2D_{13/2}$                       | 17095.63                    | 17084                        | 12  | 0.765 $^2G_{27/2}$                       | 39940.72                    | 39947                        | -6  |
| -0.973 $^4G_{11/2}$                      | 17409.58                    | 17408                        | 2   | -0.785 $^2F_{17/2}$                      | 53092.80                    | 53095                        | -2  |
| -0.979 $^2K_{11/2}$                      | 17642.06                    | 17628                        | 14  | -0.747 $^2F_{15/2}$                      | 54184.37                    | 54180                        | 4   |
| 0.977 $^2P_{1/2}$                        | 18693.65                    | 18691                        | 3   |                                          |                             |                              |     |

Parameters (cm<sup>-1</sup>)<sup>c</sup>

|              |              |               |           |       |             |
|--------------|--------------|---------------|-----------|-------|-------------|
| E(ave)       | 19718        | $T^2$         | 449 (9)   | $M^0$ | 0.19 (.35)  |
| $F^2$        | 59960 (28)   | $T^3$         | 34.9 (5)  | $M^2$ | 0.11        |
| $F^4$        | 39937 (112)  | $T^4$         | 83.2 (7)  | $M^4$ | 0.07        |
| $F^6$        | 26429 (71)   | $T^6$         | -217 (11) | $P^2$ | 182 (51)    |
| $\zeta_{4f}$ | 664.9 (2)    | $T^7$         | 314 (16)  | $P^4$ | -174 (131)  |
| $\alpha$     | 30.935 (.25) | $T^8$         | 284 (19)  | $P^6$ | -1158 (211) |
| $\beta$      | -813.6 (15)  |               |           |       |             |
| $\gamma$     | 2203 (19)    | $\sigma = 17$ |           |       |             |

a. Experimental data from Sugar<sup>80</sup> modified by an analysis by Crosswhite et al.<sup>3</sup> where the value 27178.80 cm<sup>-1</sup> was substituted for Sugar's original report of 26979.66 cm<sup>-1</sup>, and levels at 53092.80 and 54184.37 cm<sup>-1</sup> were added.

b. The largest eigenvector component is given with its phase.

c. Parameter errors are shown in parentheses;  $M^0$  was freely varied, but  $M^2$  and  $M^4$  were constrained by the relations  $M^2 = 0.56 M^0$ ,  $M^4 = 0.38 M^0$ .

fluorides, it is possible that, in making assignments for the best agreement with the calculated energies, some discrepancies may have been hidden. Thus, we cannot necessarily conclude on the basis of the fits to experimental data that the single-electron crystal-field model works better for the fluorides than the chlorides.

One of the critical aspects of crystal-field parametrization is the choice of initializing values. In the present investigation, initial values for  $D_{3h}$  site symmetry were taken from the work of Onopko,<sup>9</sup> and a consistent transformation to a  $C_2$  symmetry was introduced by Morrison and Leavitt.<sup>12</sup> The superposition model of Newman<sup>85,86</sup> offers an alternative method for calculation of starting crystal-field parameters based on a knowledge of the crystal-structure. It can also be used to reduce the number of freely varied parameters by providing values for the ratios of selected parameters. However, both the lattice sum calculations<sup>12</sup> and the superposition model require detailed crystallographic data. The approach we have used yields sets of parameters that are in general of the same magnitude and sign as the real parts of the corresponding  $C_2$  symmetry parameter sets, Table 2, but is not directly related to the crystal structure.

Trends in magnitude of the crystal-field parameters for  $\text{Ln}^{3+}:\text{LaF}_3$  as a function of the number of f electrons are shown in Figs. 18-20. One would expect a decrease in magnitude of these parameters over the series due to the increased nuclear charge that the electrons experience. As the electron orbits are pulled in closer to the nucleus, the effect of the crystal-field should be reduced, even though the network of nearest neighbor  $\text{F}^-$  ions may to a certain extent collapse around the impurity ion as the latter radius decreases. One would also expect that the change would be greatest early in the series where ionic radii are exhibiting their greatest relative decrease. In the heavier members of the series the change in ionic radius from one ion to the next is much less pronounced. Interestingly, not all the parameters follow the expected trends.

$B_0^2$  appears to be essentially constant over the series, Fig. 18, as pointed out by Morrison and Leavitt.<sup>12</sup>  $B_2^2$  was not well defined in a number of fits, and thus was frequently not varied. All of the other parameters

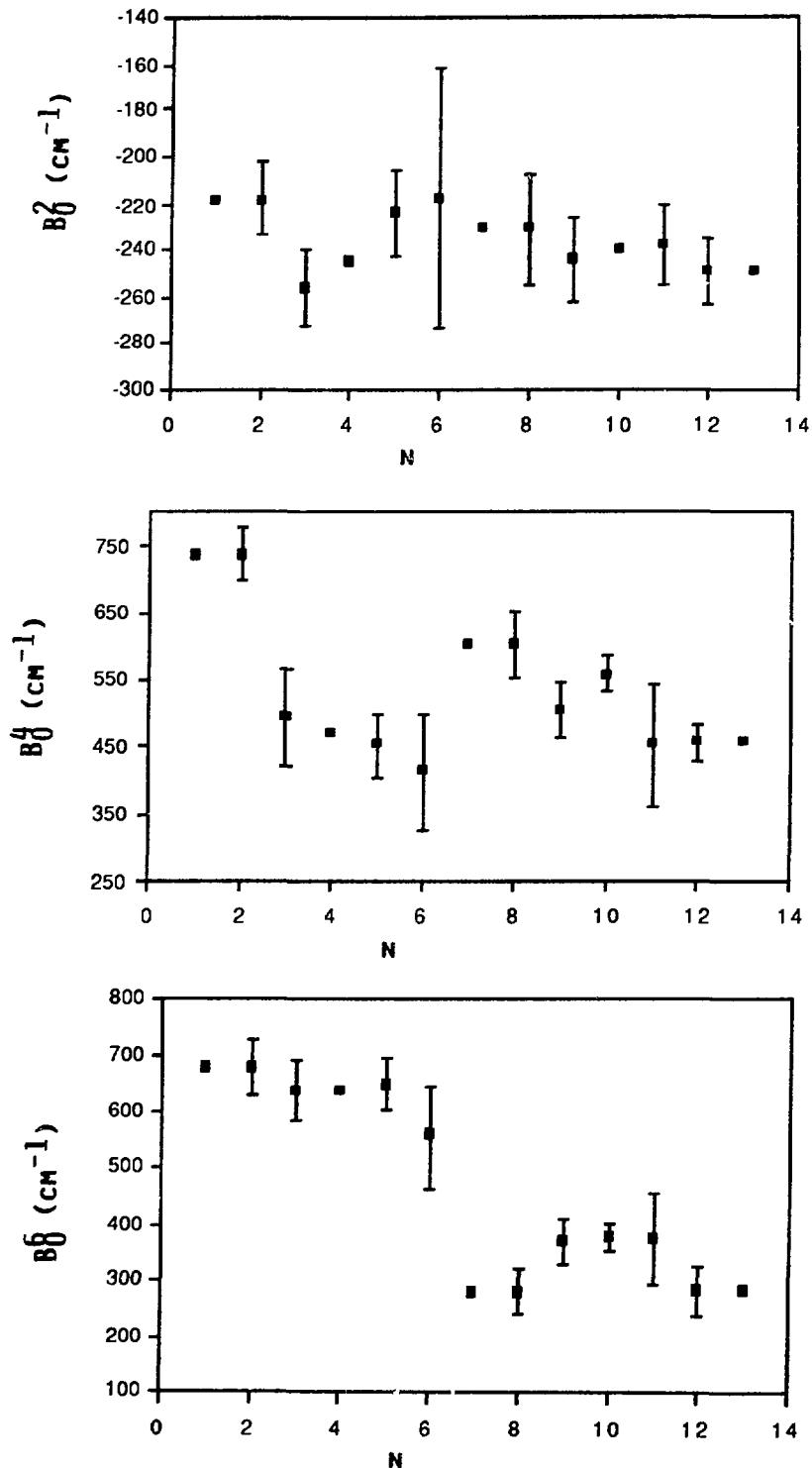



Fig. 18. Variation of the Crystal-field Parameters  $B_0^2$ ,  $B_0^4$ , and  $B_0^6$  (in  $\text{cm}^{-1}$ ) for  $\text{Ln}^{3+}:\text{LaF}_3$  as a Function of Number of f-electrons (N).

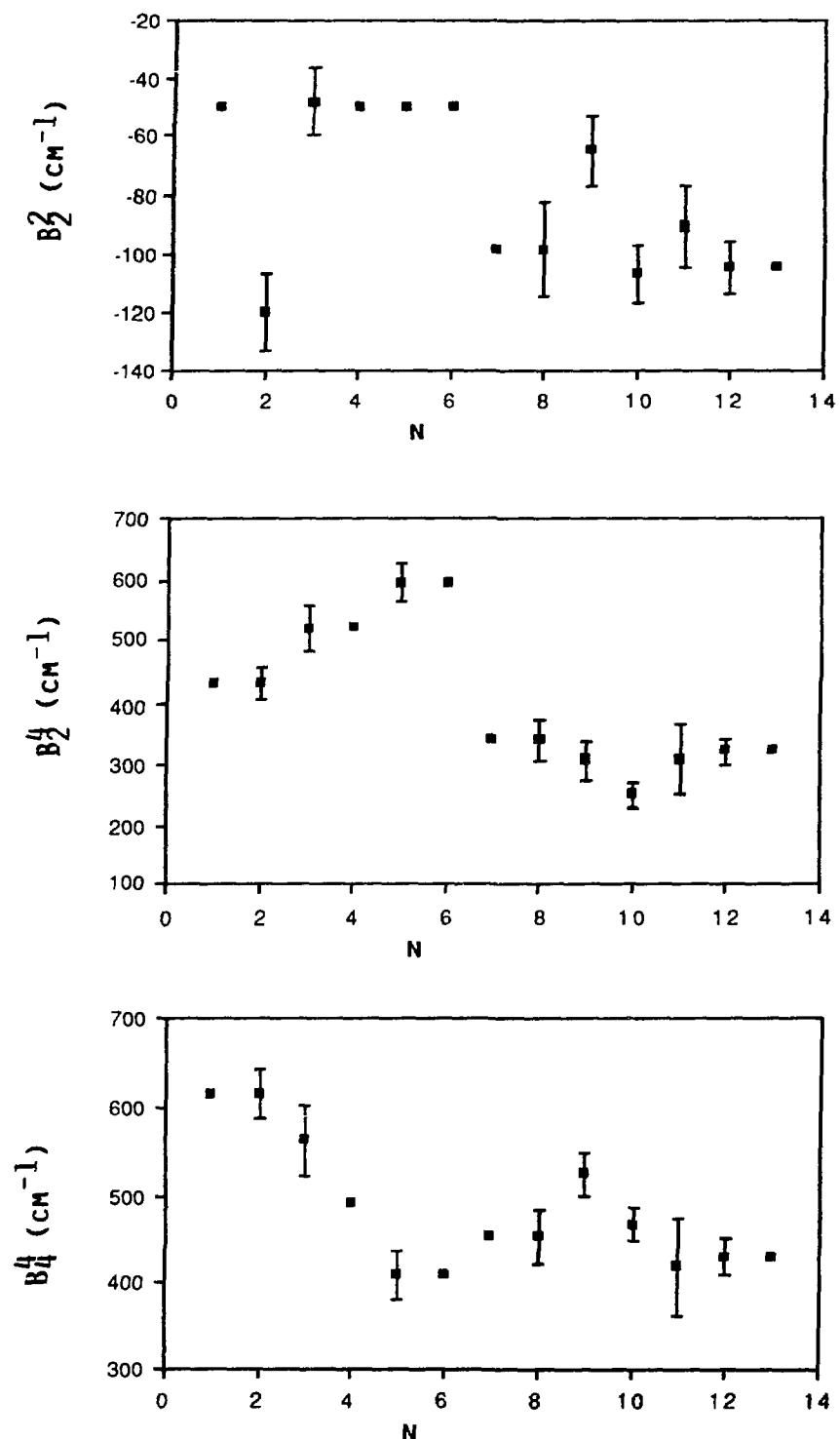



Fig. 19. Variation of the Crystal-field Parameters  $B_2^2$ ,  $B_2^4$ , and  $B_4^4$  (in  $\text{cm}^{-1}$ ) for  $\text{Ln}^{3+}:\text{LaF}_3$  as a Function of Number of f-electrons (N).

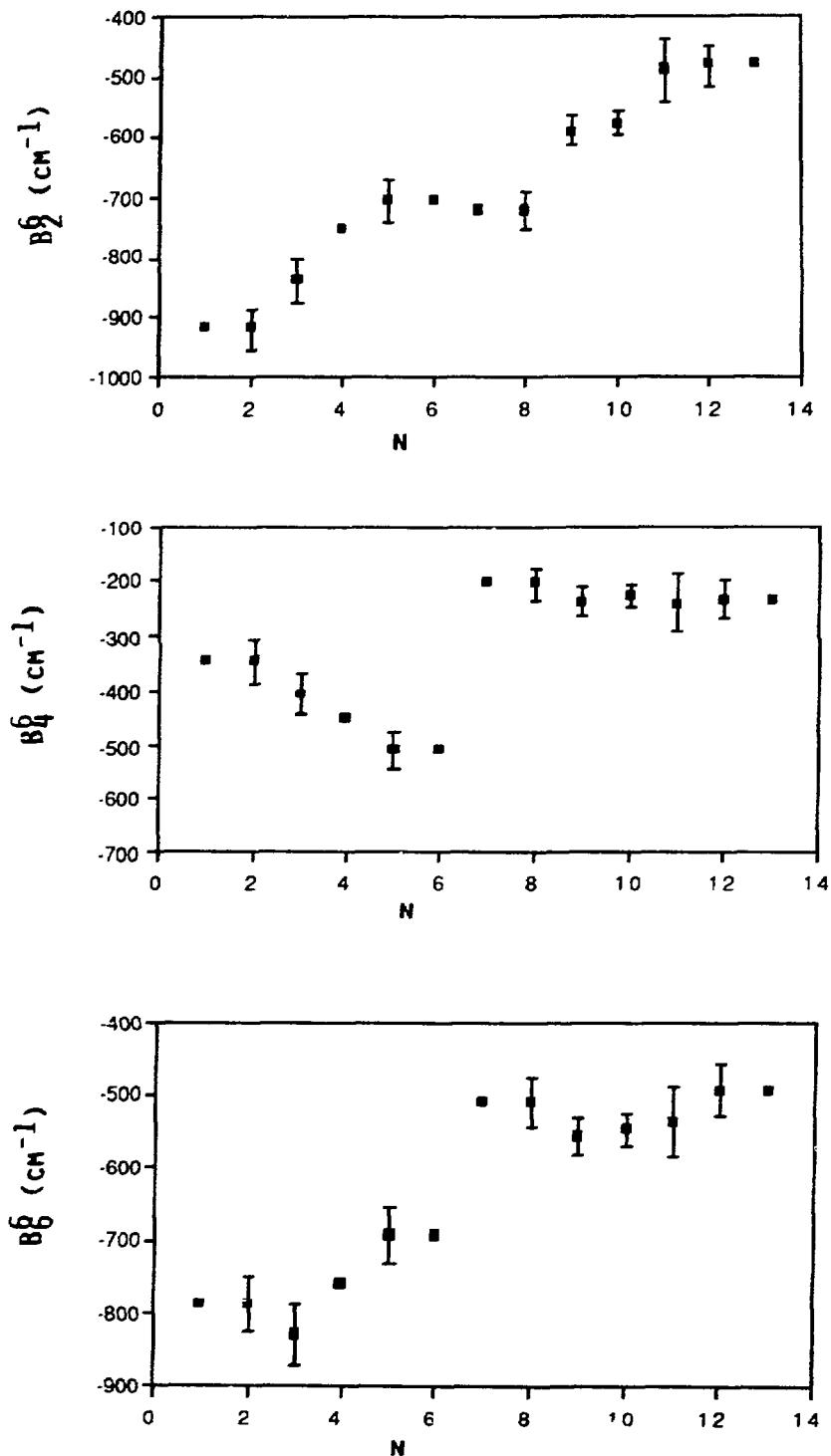



Fig. 20. Variation of the Crystal-field Parameters  $B_2^6$ ,  $B_4^6$ , and  $B_6^6$  (in  $\text{cm}^{-1}$ ) for  $\text{Ln}^{3+}:\text{LaF}_3$  as a Function of Number of f-electrons (N).

with the possible exception of  $B_2^6$  are best represented by different lines for the light and heavy ends of the series, Figs. 18-20. All except  $B_0^4$  and  $B_2^6$  are essentially constant over the second half of the series.

For many of the parameters there is a marked discontinuity in magnitude between  $\text{Eu}^{3+}$  and  $\text{Tb}^{3+}$ ; however, we found that the crystal-field parameters for both  $\text{Eu}^{3+}$  and  $\text{Tb}^{3+}:\text{LaF}_3$  very adequately described the limited data for  $\text{Gd}^{3+}$ . For  $B_0^4$  and possibly  $B_4^4$  and  $B_4^6$  there is an increase in the magnitude of the parameters for  $\text{Tb}^{3+}$  compared to  $\text{Eu}^{3+}$ , but for others there is a decrease. For comparison, parameters<sup>10</sup> for  $\text{Ln}^{3+}:\text{LaCl}_3$  are plotted in Fig. 21. Only the  $k=6$  terms show the discontinuity and the decrease in magnitude at the center of the series. Richardson and co-workers have carried out a related analysis of the spectra of  $\text{Ln}^{3+}$  in cubic  $\text{Cs}_2\text{NaLnCl}_6$ .<sup>87</sup> Their parameter values (which are normalized according to a convention different from that used elsewhere in this report) are plotted in Fig. 22. Again we see a marked decrease across the center of the series for  $k=6$ . The scatter is large for  $k=4$  so that the existence of a break is not clear. However, if the values for  $\text{Eu}^{3+}$  and  $\text{Tb}^{3+}$  can be considered well established, there is also a decrease in  $B_0^4$  in this case. While similar patterns can be recognized in previous systematic analyses of crystal-field parameters, the larger number of parameters involved in the present analysis in  $C_{2v}$  symmetry makes the trends over the series more striking. The common features already cited do not appear to be restricted to a particular symmetry or type of ligand.

Judd has interpreted the drop in the sixth-rank parameters in going from  $\text{Eu}^{3+}$  to  $\text{Tb}^{3+}:\text{LaCl}_3$  as an indication of the need to include two-electron operators in the crystal-field Hamiltonian.<sup>82</sup> One-electron operators,  $U^k$ , change sign at the center of the series but the likely two-electron operators would not. Thus if contributions from two-electron operators are being absorbed by the crystal-field parameters, there would be a break when crossing the center of the series. If the two-electron terms were properly parametrized and not included in the one-electron crystal-field parameters, the latter would presumably vary smoothly across the series.

There are a number of possible two-electron operators which could be added to the crystal-field Hamiltonian,<sup>88</sup> but it has been pointed out that

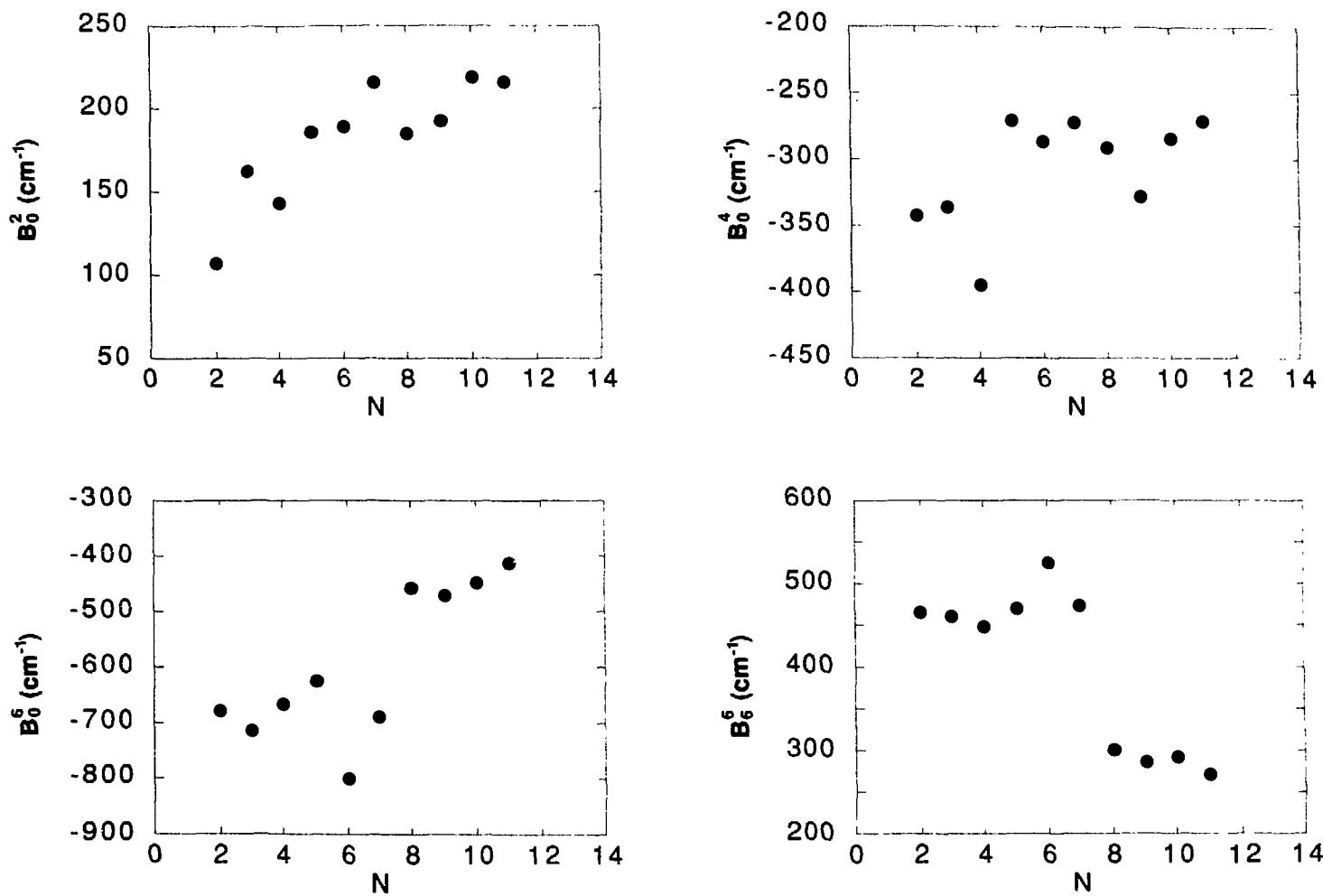



Fig. 21. Variation of the Crystal-field Parameters  $B_0^2$ ,  $B_0^4$ ,  $B_0^6$ , and  $B_6^6$  (in  $\text{cm}^{-1}$ ) for  $\text{Ln}^{3+}:\text{LaCl}_3$  as a Function of Number of f-electrons (N).

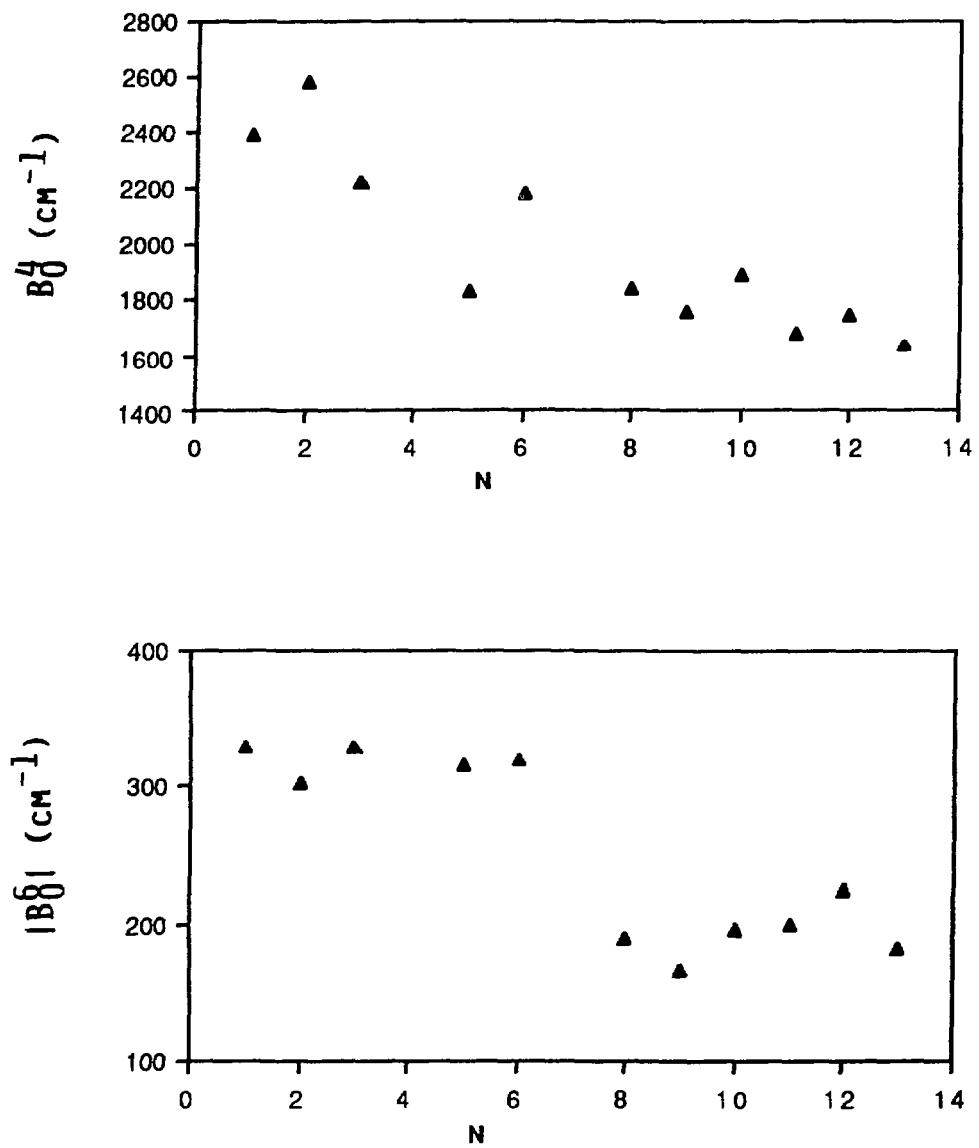



Fig. 22. Variation of the Crystal-field Parameters  $B_0^4$ , and  $B_0^6$  (in  $\text{cm}^{-1}$ ) for  $\text{Cs}_2\text{NaLnCl}_6$  as a Function of Number of f-electrons (N).

a large part of the effect may be parametrized as a spin-correlated crystal-field, (SCCF), which requires only 3 additional parameters.<sup>81,84</sup> The one-electron crystal-field operator is supplemented by

$$H_{SCCF} = \sum_{k,q,i} b_q^k s_i \cdot s c_q^{(k)}$$

and the ratio  $c_k = b_q^k / B_q^{(k)}$  is used as a measure of the importance of the 2-electron crystal-field. This has the advantage of being independent of the normalization used to define the crystal-field parameters. Values of  $c_k$  have been obtained for  $Gd^{3+}$  and  $Ho^{3+}$  in  $LaCl_3$ ,<sup>89</sup> for three lanthanide ions in  $Cs_2NaYCl_6$ ,<sup>90</sup> and for  $Nd^{3+}$  in fluoride matrices.<sup>91</sup> However, the improvement in the fit in these investigations was not enough to clearly establish the importance of this mechanism. In a recent paper, the role of orthogonal operators in representing the correlation crystal-field was examined.<sup>92</sup> Again,  $Gd^{3+}$  and  $Ho^{3+}:LaCl_3$  data were chosen, but consistent results were limited to parameters related to the sixth rank SCCF. These results are of the correct sign to remove the drop in the center of the series. A positive  $c_k$  has been shown to result from a covalency (charge transfer) mechanism.<sup>84</sup>

One of the important applications of a systematic set of lanthanide energy level parameters is found in the calculation of intensity correlations using the Judd-Ofelt theory.<sup>93,94</sup> The matrix elements of the transition probability in absorption and luminescence are appropriately computed from a systematic set of atomic parameters. The intensity parameters can then be determined semi-empirically for any particular system from the observed variation in band intensities. We have already tabulated the matrix elements of  $\mu^{(k)}$  based on an earlier more approximate assessment of the atomic parameters.<sup>11</sup> While the present results show clear deficiencies in some of the parameter trends originally deduced, the discrepancies are not sufficiently serious to warrant recalculation of the matrix elements.

The widely-circulated Dieke chart of energy level structure in the lanthanides<sup>1</sup> was limited by the extent of available analyses of the spectra of  $Ln^{3+}:LaCl_3$ . In the present case we extrapolated or interpolated to compute levels for  $Pm^{3+}$  and  $Eu^{3+}$ , but the remaining lanthanide spectra form the basis for a very consistent interpretation. We have prepared a new

chart, Fig. 23, based entirely on the computed energy level schemes. This more complete representation should provide a useful basis for comparison with spectra in other matrices.

## 7.0 CONCLUSIONS

Using a  $C_{2v}$  crystal-field to approximate the  $C_2$  site symmetry, we have been able to correlate extensive spectroscopic data for  $Ln^{3+}:LaF_3$  with a consistent set of free-ion and crystal-field parameters. The rms deviations are all  $\sim 10-15$   $cm^{-1}$ . These results provide the basis for the most complete analysis of rare earth ions that is available in any host. We have drawn a number of conclusions regarding systematic trends in parameter values which should prove useful in analyses of other rare earth and actinide spectra, and which point out directions where further work is needed. Considering the large experimental basis available for the  $LaF_3$  matrix, the experimental similarities to the  $LaCl_3$  case, and the inherent difficulty we experienced in defining the values of the free-ion parameters near the center of the series, it is evident that reservation must be exercised in evaluating published sets of atomic parameters derived by fits to severely limited data bases and without regard for systematics.

1. The variations of  $F^k$  across the series are well represented by linear equations while those of  $\zeta$  are much better represented by a cubic equation.

2. The difference between HFR and empirical values for  $F^2$  and  $F^4$  ( $\Delta F^2$  and  $\Delta F^4$ ) increases slightly across the series while  $\Delta F^6$  decreases markedly. This is contrary to previous conclusions based on less complete data.

3. The  $P^f$  parameters do not appear to have the same ratios as the  $F^k$  parameters, and we have obtained additional evidence for  $P^6$  assuming negative values at the ends of the series. Since the mechanism associated with the introduction of the  $P^f$  does not lead to negative values, this aspect of the parametrization requires further investigation.

4. Changes in magnitude of the crystal-field parameters across the series are in accord with previous indications of the importance of 2-electron operators in the crystal-field Hamiltonian. There is some indication

## ENERGY LEVELS OF THE +3 LANTHANIDES IN $\text{LaF}_3$

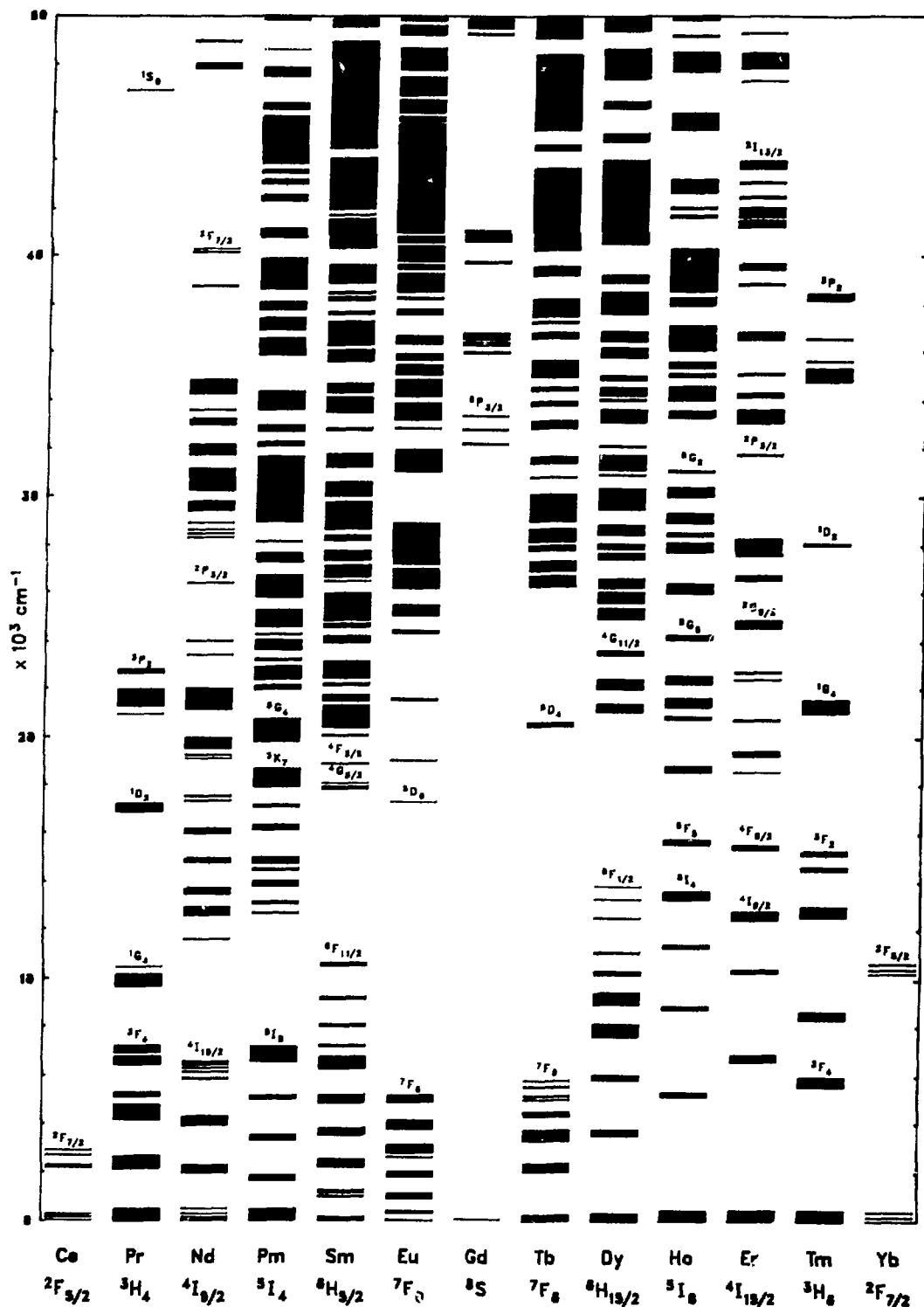



Fig. 23. Energy Level Structure of  $\text{Ln}^{3+}:\text{LaF}_3$  Based on Computed Crystal-field Energies in the Range  $0-50000 \text{ cm}^{-1}$ .

of the need for such terms with ranks 4 and 6. The magnitudes of  $B_0^4$  and  $B_4^4$  increase at the center of the series whereas most other rank 4 and 6 parameters decrease. We conclude that variation of the crystal-field parameters is such that extrapolation from one half of the series to the other could lead to erroneous estimates of parameter values.

While the model used contains a large number of parameters associated with the atomic interactions, many of these do not show a significant variation over the series. Nevertheless, it is the inclusion of effective operators representing important classes of configuration interaction that has removed much of the distortion, particularly of the  $F^k$  parameters, found in early analyses. The two- and three-body effective operator parameters tabulated here can be used directly in the initial efforts to analyze spectra of lanthanides in other matrices.

#### 8.0 ACKNOWLEDGEMENTS

This work was performed under the auspices of the Office of Basic Energy Sciences, Division of Chemical Sciences, U. S. Department of Energy, under contract number W-31-109-Eng-38. The contribution of Hannah Crosswhite in developing the computer programs is gratefully acknowledged.

## 9.0 REFERENCES

1. G. H. Dieke, "Spectra and Energy Levels of Rare Earth Ions in Crystals," H. M. Crosswhite and H. Crosswhite, Eds., Wiley, NY, 1968.
2. B. R. Judd, "Operator Techniques in Atomic Spectroscopy," McGraw-Hill, NY, 1963.
3. B. G. Wybourne, "Spectroscopic Properties of Rare Earths," Wiley, NY, 1965.
4. S. Hüfner, "Optical Spectra of Transparent Rare Earth Compounds," Academic Press, NY, 1978.
5. C. A. Morrison and R. P. Leavitt, in "Handbook of the Physics and Chemistry of Rare Earths," Ed. K.A. Gschneidner and L. Eyring, North-Holland Publishing Co., NY, 1982, Vol. 5, pp. 461.
6. E. Y. Wong, O. M. Stafudd, D. R. Johnston, Phys. Rev. 131, 990 (1963).
7. U. V. Kumar, D. R. Rao, P. Venkateswarlu, J. Chem. Phys. 66, 2019 (1977).
8. A. Zalkin, D. H. Templeton, and T. E. Hopkins, Inorg. Chem. 5, 1466 (1966).
9. D. E. Onopko, Opt. Spectrosc. (U.S.S.R.) 24, 301 (1968); Opt. Spectrosc. (U.S.S.R.), Suppl. 4, 11-12 (1968).
10. H. M. Crosswhite, "Spectroscopie des elements de transition et des elements lourds dans les solides," Colloq. Int. CNRS 255, 65 (1977).
11. W. T. Carnall, H. M. Crosswhite, and H. Crosswhite, Special Rep. 1977 (Chemistry Division, Argonne National Laboratory, Argonne, IL). (Quoted incorrectly in Ref. 5 as ANL-78-xx-95).
12. C. A. Morrison and R. P. Leavitt, J. Chem. Phys. 71, 2366 (1979).
13. W. T. Carnall and H. Crosswhite, J. Less-Common Metals 93, 127 (1983).
14. W. T. Carnall, G. L. Goodman, R. S. Rana, P. Vandevelde, L. Fluyt, and C. Görller-Walrand, J. Less-Common Metals 116, 17 (1986).
15. G. L. Goodman, W. T. Carnall, R. S. Rana, P. Vandevelde, L. Fluyt, and C. Görller-Walrand, J. Less-Common Metals 126, 283 (1986).

16. W. T. Carnall, G. L. Goodman, G. M. Jursich, R. S. Rana, P. Vandevelde, L. Fluyt, and C. Görller-Walrand, *Inorg. Chim. Acta* 139, 275 (1987).
17. Optovac Inc., North Brookfield, MA, 01535.
18. W. S. Heaps, L. R. Elias, W. M. Yen, *Phys. Rev.* B13, 94 (1976).
19. M. J. Weber, in "Optical Properties of Ions in Crystals," H. M. Crosswhite and H. W. Moos, Eds., Wiley Interscience, NY, 1967, p. 467.
20. I. Oftedal, *Z. Physik. Chem.* B5, 272 (1929); B13, 190 (1931).
21. K. Schlyter, *Arkiv Kemi* 5, 73 (1953).
22. M. Mansmann, *Z. Anorg. Allgem. Chemie* 331, 98 (1964); *Z. Krist.* 122, 375 (1965).
23. R. P. Lowndes, J. F. Parrish, C. H. Perry, *Phys. Rev.* 182, 913 (1969).
24. A. K. Cheetham, B. E. F. Fender, H. Fuess, A. F. Wright, *Acta Cryst.* B32, 94 (1976).
25. A. Zalkin and D. H. Templeton, *J. Am. Chem. Soc.* 75, 2453 (1953).
26. E. V. Sayre and S. Freed, *J. Chem. Phys.* 23, 2066 (1955).
27. R. P. Bauman and S. P. S. Porto, *Phys. Rev.* 161, 842 (1967).
28. V. V. Azarov, P. V. Zinovev, B. I. Minkov, B. S. Skorobogatov, and E. V. Shcherbina, *Optics Spectrosc.* 30, 491 (1971).
29. C. Froese Fischer, "The Hartree-Fock Method for Atoms; a numerical approach," Wiley, NY, 1977.
30. K. Rajnak and B. G. Wybourne, *Phys. Rev.* 132, 280 (1963).
31. J. C. Morrison and K. Rajnak, *Phys. Rev.* A4, 536 (1971).
32. Jan P. Hessler and W. T. Carnall, *ACS Symposium Series* No. 131, 349 (1980).
33. J. C. Morrison, *Phys. Rev.* A6, 643 (1972).
34. B. R. Judd, *Phys. Rev.* 141, 4 (1966).
35. H. Crosswhite, H. M. Crosswhite, and B. R. Judd, *Phys. Rev.* 174, 89 (1968).
36. G. Balasubramanian, M. M. Islam, and D. J. Newman, *J. Phys.* B8, 2601 (1975).
37. B. R. Judd, H. M. Crosswhite, and H. Crosswhite, *Phys. Rev.* 169, 130 (1968).

38. H. H. Marvin, Phys. Rev. 71, 102 (1947).
39. G. M. Copland, D. J. Newman, and C. D. Taylor, J. Phys. B4, 1388 (1971).
40. R. D. Cowan and D. C. Griffin, J. Opt. Soc. Am. 66, 1010 (1976).
41. H. M. Crosswhite and H. Crosswhite, J. Opt. Soc. Am. B1, 246 (1984).
42. P. Caro, J. Derouet, L. Beaury, G. Teste de Sagey, J. P. Chaminade, J. Aride, M. Pouchard, J. Chem. Phys. 74, 2698 (1981).
43. R. A. Buchanan, H. E. Rast, H. H. Caspers, J. Chem. Phys. 44, 4063 (1966).
44. H. Gerlinger and G. Schaak, Phys. Rev. B33, 7438 (1986).
45. W. T. Carnall, P. R. Fields, R. Sarup, J. Chem. Phys. 51, 2587 (1969).
46. E. Y. Wong, O. M. Stafudd, D. R. Johnston, J. Chem. Phys. 39, 786 (1963).
47. W. M. Yen, W. C. Scott, and A. L. Schawlow, Phys. Rev. 136, A271 (1964).
48. H. H. Caspers, H. E. Rast, and R. A. Buchanan, J. Chem. Phys. 43, 2124 (1965).
49. L. R. Elias, W. S. Heaps, W. M. Yen, Phys. Rev. B8, 4989 (1973).
50. C. D. Cordero-Montalvo and N. Bloembergen, Phys. Rev. B30, 438 (1984); Erratum, Phys. Rev. B31, 613 (1985).
51. C. G. Levy, T. J. Glynn, W. M. Yen, J. Lumin. 31/32, 245 (1984).
52. H. H. Caspers, H. E. Rast, and R. A. Buchanan, J. Chem. Phys. 42, 3214 (1965).
53. U. V. Kumar, H. Jagannath, D. R. Rao, P. Venkateswarlu, Indian J. Phys. 50, 90 (1976).
54. Y. K. Voron'ko, V. V. Osiko, N. V. Savost'yanova, V. S. Fedorov, I. A. Shcherbakov, Soviet Physics-Solid State 14, 2294 (1973).
55. H. M. Crosswhite, H. Crosswhite, F. W. Kaset, and R. Sarup, J. Chem. Phys. 64, 1981 (1976).
56. W. T. Carnall, H. Crosswhite, H. M. Crosswhite, and J. G. Conway, J. Chem. Phys. 64, 3582 (1976).
57. H. E. Rast, J. L. Fry, and H. H. Caspers, J. Chem. Phys. 46, 1460 (1967).

58. W. F. Krupke and J. B. Gruber, *J. Chem. Phys.* 39, 1024 (1963); 41, 1225 (1964); Erratum, *J. Chem. Phys.* 42, 1134 (1965).
59. W. T. Carnall, P. R. Fields, and R. Sarup, *J. Chem. Phys.* 57, 43 (1972).
60. M. J. Weber, *Phys. Rev.* 157, 262 (1967).
61. W. T. Carnall, P. R. Fields, J. Morrison, and R. Sarup, *J. Chem. Phys.* 52, 4054 (1970).
62. H. H. Caspers, H. E. Rast, and J. L. Fry, *J. Chem. Phys.* 53, 3208 (1970).
63. H. M. Crosswhite, H. Crosswhite, N. Edelstein, and K. Rajnak, *J. Chem. Phys.* 67, 3002 (1977).
64. J. L. Fry, H. H. Caspers, H. E. Rast, and S. A. Miller, *J. Chem. Phys.* 48, 2342 (1968).
65. D. C. Krupka and H. J. Guggenheim, *J. Chem. Phys.* 51, 4006 (1969).
66. J. A. Caird, W. T. Carnall, and J. P. Hessler, *J. Chem. Phys.* 74, 3225 (1981).
67. H. H. Caspers, S. A. Miller, H. E. Rast, J. L. Fry, *Phys. Rev.* 180, 329 (1969).
68. R. L. Schwiesow and H. M. Crosswhite, *J. Opt. Soc. Am.* 59, 602 (1969).
69. W. T. Carnall, P. R. Fields, R. Sarup, *J. Chem. Phys.* 54, 1476 (1971).
70. B. G. Wybourne, *Phys. Rev.* 148, 317 (1966).
71. V. K. Sharma, *J. Chem. Phys.* 54, 496 (1971).
72. D. Furniss, E. A. Harris, D. B. Hollis, *J. Phys.* C20, L147 (1987).
73. R. L. Schwiesow and H. M. Crosswhite, *J. Opt. Soc. Am.* 59, 592 (1969).
74. J. Sugar, V. Kaufman, and N. Spector, *J. Res. Natl. Bur. Stan.* 83, 233 (1978).
75. H. E. Rast, H. H. Caspers, S. A. Miller, *J. Chem. Phys.* 47, 3874 (1967).
76. B. R. Judd and H. Crosswhite, *J. Opt. Soc. Am.* B1, 255 (1984).
77. B. R. Judd and M. A. Suskin, *J. Opt. Soc. Am.* B1, 261 (1984).
78. B. R. Judd, *Private communication*, April 1987.
79. A. Pasternak and Z. B. Goldschmidt, *Phys. Rev.* A6, 55 (1972).

80. J. Sugar, J. Opt. Soc. Am. 53, 831 (1963).
81. B. R. Judd, Phys. Rev. Lett. 39, 242 (1977).
82. B. R. Judd, J. Lumin. 18/19, 604, (1979).
83. B. R. Judd, J. Phys. C13, 2695, (1980).
84. D. J. Newman, G. G. Siu, W. Y. P. Fung, J. Phys. C15, 3113 (1982).
85. D. J. Newman, Adv. Phys. 20, 197 (1971).
86. Y. Y. Yeung and D. J. Newman, J. Chem. Phys. 82, 3747 (1985).
87. F. S. Richardson, M. F. Reid, J. J. Dallara, and R. D. Smith, J. Chem. Phys. 83, 3813 (1985).
88. S. S. Bishton and D. J. Newman, J. Phys. C3, 1753 (1970).
89. H. Crosswhite and D. J. Newman, J. Chem. Phys. 81, 4959 (1984).
90. M. F. Reid and F. S. Richardson, J. Chem. Phys. 83, 3831 (1985).
91. C. K. Jayasankar, F. S. Richardson, M. F. Reid, P. Porcher, and P. Caro, Inorg. Chim. Acta 139, 287 (1987).
92. M. F. Reid, J. Chem. Phys. 87, 2875 (1987).
93. B. R. Judd, Phys. Rev. 127, 750 (1962).
94. G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).

Appendix I.  
Experimental and Computed Energy Level Structure for  $\text{Pr}^{3+}:\text{LaF}_3$

| SLJ            | Model <sup>a</sup>  | Expt. <sup>b</sup>  | Calc. <sup>c</sup>  | O-C | SLJ            | Model <sup>a</sup>  | Expt. <sup>b</sup>  | Calc. <sup>c</sup>  | O-C |
|----------------|---------------------|---------------------|---------------------|-----|----------------|---------------------|---------------------|---------------------|-----|
| State          | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |     | State          | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |     |
| $^3\text{H}_4$ | 0                   | 0                   | 0.2                 | 0   | $^3\text{H}_5$ | 2281                | 2272                | 2284                | -12 |
|                | 90                  | 57                  | 71                  | -14 |                | 2289                | 2299                | 2290                | 9   |
|                | 95                  | 71                  | 95                  | -24 |                | 2294                | 2304                | 2295                | 9   |
|                | 124                 | 136                 | 138                 | -2  |                | 2327                | 2354                | 2318                | 36  |
|                | 144                 | 195                 | 183                 | 12  |                | 2363                | 2412                | 2399                | 13  |
|                | 226                 | 204 <sup>d</sup>    | 221                 | -17 |                | 2441                | 2431                | 2412                | 19  |
|                | 305                 | 322 <sup>d</sup>    | 333                 | -11 |                | 2442                | 2457                | 2438                | 19  |
|                | 386                 | -                   | 444                 |     |                | 2538                | 2567                | 2540                | 27  |
|                | 479                 | (508) <sup>e</sup>  | 463                 |     |                |                     |                     |                     |     |
| $^3\text{H}_5$ |                     |                     |                     |     | $^3\text{H}_6$ | 4220                | -                   | 4179                |     |
|                | 2160                | -                   | 2126                |     |                | 4230                | 4223                | 4200                | 23  |
|                | 2184                | -                   | 2158                |     |                | 4319                | 4268                | 4283                | -15 |
|                | 2188                | 2179                | 2191                | -12 |                | 4381                | 4305                | 4321                | -16 |

## Appendix I. (Cont.)

| SLJ            | Model <sup>a</sup><br>(cm <sup>-1</sup> ) | Expt. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | SLJ            | Model <sup>a</sup><br>(cm <sup>-1</sup> ) | Expt. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) |
|----------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| State          |                                           |                                           | O-C                                       | State          |                                           |                                           | O-C                                       |
| $^3\text{H}_6$ | 4414                                      | 4388                                      | 4384                                      | 4              | $^3\text{F}_2$                            | 5263                                      | 5280 <sup>d</sup>                         |
|                | 4473                                      | 4440 <sup>d</sup>                         | 4467                                      | -27            |                                           |                                           | 5276                                      |
| 4494           | -                                         | 4478                                      |                                           | $^3\text{F}_3$ | 6420                                      | 6453                                      | 6456                                      |
| 4507           | 4508                                      | 4496                                      | 12                                        |                | 6481                                      | 6495                                      | 6490                                      |
| 4545           | 4529                                      | 4508                                      | 21                                        |                | 6489                                      | 6499                                      | 6508                                      |
| 4621           | 4581                                      | 4590                                      | -9                                        |                | 6562                                      | 6587                                      | 6579                                      |
| 4713           | 4673                                      | 4693                                      | -20                                       |                | 6576                                      | 6602                                      | 6600                                      |
| 4715           | -                                         | 4712                                      |                                           |                | 6602                                      | 6622                                      | 6628                                      |
| 4821           | 4785                                      | 4814                                      | -29                                       |                | 6701                                      | 6722                                      | 6740                                      |
|                |                                           |                                           |                                           |                |                                           |                                           | -18                                       |
| $^3\text{F}_2$ | 5130                                      | 5137                                      | 5145                                      | -8             | $^3\text{F}_4$                            | 6907                                      | 6927                                      |
|                | 5153                                      | 5182                                      | 5182                                      | 0              |                                           | 6920                                      | -                                         |
| 5180           | 5201                                      | 5185                                      | 16                                        |                |                                           | 6944                                      | 6946                                      |
| 5245           | 5275                                      | 5270                                      | 5                                         |                |                                           | -                                         | 6950                                      |
|                |                                           |                                           |                                           |                |                                           |                                           | 6952                                      |

Appendix 1 (Cont.)

| SLJ     | Model <sup>a</sup>  | Expt. <sup>b</sup>  | Calc. <sup>c</sup>  | SLJ | Model <sup>a</sup> | Expt. <sup>b</sup>  | Calc. <sup>c</sup>  |
|---------|---------------------|---------------------|---------------------|-----|--------------------|---------------------|---------------------|
| State   | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | 0-C | State              | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |
| $^3F_4$ | 6958                | 6946                | 6953                | -7  | $^1G_4$            | 10477               | 10499               |
|         | 6996                | 6980                | 6983                | -3  |                    |                     | 10516               |
| 7000    | 7029                | 7034                | -5                  |     | $^1D_2$            | 16879               | 16887               |
| 7084    | 7104                | 7096                | 8                   |     |                    | 893                 | 895                 |
| 7129    | 7165                | 7152                | 13                  |     |                    | 17083               | 17082               |
|         |                     |                     |                     |     |                    | 095                 | -                   |
|         |                     |                     |                     |     |                    |                     | 117                 |
| $^1G_4$ | 9720                | 9716                | 9721                | -5  |                    | 149                 | 183                 |
| 9761    | 9751                | 9762                | -11                 |     |                    |                     | 170                 |
| 9840    | 9876                | 9860                | 16                  |     | $^3P_0$            | 20927               | 20911               |
| 9936    | 9912                | 9927                | -15                 |     |                    |                     | 16                  |
| 9937    | -                   | 9958                |                     |     | $^1I_6$            | 21276               | 21279               |
| 9979    | 10005               | 9996                | 9                   |     |                    | 313                 | -                   |
| 10031   | 042                 | 10030               | 12                  |     |                    |                     | 304                 |
| 10154   | 10163               | 10150               | 13                  |     |                    | 320                 | 331                 |
|         |                     |                     |                     |     |                    |                     | 340                 |
|         |                     |                     |                     |     |                    | 398                 | 404                 |
|         |                     |                     |                     |     |                    | 390                 | 390                 |
|         |                     |                     |                     |     |                    |                     | 14                  |

## Appendix I (Cont.)

| SLJ     | Model <sup>a</sup>  | Expt. <sup>b</sup>  | Calc. <sup>c</sup>  | SLJ   | Model <sup>a</sup>  | Expt. <sup>b</sup>  | Calc. <sup>c</sup>  |       |
|---------|---------------------|---------------------|---------------------|-------|---------------------|---------------------|---------------------|-------|
| State   | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | State | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |       |
| $^1I_6$ | 21440               | 21418               | 21406               | 12    | $^1I_6$             | 21852               | 21897               | 21889 |
|         | 447                 | -                   | 481                 |       |                     | 905                 | 942                 | 958   |
| $^3P_1$ | 472                 | 475                 | 487                 | -12   | $^3P_2$             | 22607               | 22691               | 22668 |
|         | 532                 | 522                 | 519                 | 3     |                     |                     |                     | 23    |
| $^1I_6$ | 541                 | -                   | 570                 |       | $^3P_2$             | 664                 | 714                 | 704   |
| $^3P_1$ | 556                 | 567                 | 592                 | -25   |                     | 673                 | 734                 | 738   |
| $^1I_6$ | 598                 | 585                 | 588                 | -3    | $^1S_0$             | 725                 | 772                 | 787   |
|         | 619                 | -                   | 637                 |       |                     | 767                 | 819                 | 817   |
|         | 650                 | 668                 | 666                 | 2     | $^1S_0$             | 46961               | 46965 <sup>f</sup>  | 46965 |
|         | 738                 | -                   | 804                 |       |                     |                     |                     | 0     |

<sup>a</sup>Ref. 13. Values for the  $^1I_6$  components (but not the  $^3P_1$ ) were reduced by 100 cm<sup>-1</sup> to correspond to present assignments.

<sup>b</sup>Ref. 45 and 48 except as indicated; cm<sup>-1</sup> vac.

<sup>c</sup>Energy level parameters are given in Table 4.

<sup>d</sup>Ref. 47.

<sup>e</sup>Not used in fitting parameters.

<sup>f</sup>Ref. 51.

Appendix II.  
Experimental and Computed Energy Level Structure of  $\text{Nd}^{3+}:\text{LaF}_3$

| SLJ <sup>a</sup>    | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | O-C | Caspers<br>et al. <sup>d</sup><br>(cm <sup>-1</sup> ) | Wong<br>et al. <sup>e</sup><br>(cm <sup>-1</sup> ) | Voron'ko<br>et al. <sup>f</sup><br>(cm <sup>-1</sup> ) |
|---------------------|-------------------------------------------|-------------------------------------------|-----|-------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|
| <u>State</u>        |                                           |                                           |     |                                                       |                                                    |                                                        |
| $^4\text{I}_{9/2}$  | 0                                         | 5                                         | -5  | 0                                                     |                                                    | 0                                                      |
|                     | 45                                        | 48                                        | -3  | 45                                                    |                                                    | 44                                                     |
|                     | 136                                       | 153                                       | -17 | 136                                                   |                                                    | 140                                                    |
|                     | 296                                       | 304                                       | -8  | 296                                                   |                                                    | 297                                                    |
|                     | 500                                       | 513                                       | -13 | 500                                                   |                                                    | 502                                                    |
| $^4\text{I}_{11/2}$ | 1978                                      | 1965                                      | 13  | 1978                                                  |                                                    | 1980                                                   |
|                     | 2037                                      | 2027                                      | 10  | 2037                                                  |                                                    | 2039                                                   |
|                     | 2068                                      | 2070                                      | -2  | 2068                                                  |                                                    | 2069                                                   |
|                     | 2091                                      | 2089                                      | 2   | 2091                                                  |                                                    | 2093                                                   |
|                     | 2187                                      | 2193                                      | -6  | 2187                                                  |                                                    | 2190                                                   |
|                     | 2223                                      | 2226                                      | -3  | 2223                                                  |                                                    | 2225                                                   |
| $^4\text{I}_{13/2}$ | 3918                                      | 3902                                      | 16  | 3919                                                  |                                                    | 3919                                                   |
|                     | 3978                                      | 3970                                      | 8   | 3979                                                  |                                                    | 3973                                                   |
|                     | 4038                                      | 4033                                      | 5   | 4039                                                  |                                                    | 4039                                                   |
|                     | 4076                                      | 4087                                      | -11 | 4078                                                  |                                                    | 4077                                                   |
|                     | 4118                                      | 4115                                      | 3   | 4120                                                  |                                                    | 4119                                                   |
|                     | 4208                                      | 4205                                      | 3   | 4213                                                  |                                                    | 4213                                                   |
|                     | 4278                                      | 4267                                      | 11  | 4278                                                  |                                                    | 4277                                                   |
| $^4\text{I}_{15/2}$ | 5816                                      | 5804                                      | 12  | 5815                                                  |                                                    | 5817                                                   |
|                     | 5874                                      | 5871                                      | 3   | 5877                                                  |                                                    | 5876                                                   |
|                     | 5986                                      | 5999                                      | -13 | 5988                                                  |                                                    | 5989                                                   |
|                     | 6141                                      | 6163                                      | -22 |                                                       |                                                    | 6142                                                   |
|                     | 6167                                      | 6185                                      | -18 |                                                       |                                                    | 6173                                                   |

## Appendix II. (cont.)

| SLJ <sup>a</sup><br><u>State</u> | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | O-C | Caspers<br>et al. <sup>d</sup><br>(cm <sup>-1</sup> ) | Wong<br>et al. <sup>e</sup><br>(cm <sup>-1</sup> ) | Voron'ko<br>et al. <sup>f</sup><br>(cm <sup>-1</sup> ) |
|----------------------------------|-------------------------------------------|-------------------------------------------|-----|-------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|
| <sup>4</sup> I <sub>15/2</sub>   | 6323                                      | 6113                                      | 10  |                                                       |                                                    | 6320                                                   |
|                                  | 6454                                      | 6445                                      | 9   |                                                       |                                                    | 6448                                                   |
|                                  | 6556                                      | 6538                                      | 18  |                                                       |                                                    | 6551                                                   |
| <sup>4</sup> F <sub>3/2</sub>    | 11592                                     | 11596                                     | -4  | 11592                                                 | 11591.6                                            | 11594                                                  |
|                                  | 634                                       | 638                                       | -4  | 634                                                   | 633.6                                              | 637                                                    |
| <sup>2</sup> H <sub>9/2</sub> ,  | 12596                                     | 12576                                     | 20  | 12596                                                 | 12595.6                                            |                                                        |
| <sup>4</sup> F <sub>5/2</sub>    | 614                                       | 595                                       | 19  | 613                                                   | 612.9                                              |                                                        |
|                                  | 622                                       | 633                                       | -11 | 621                                                   | 620.7                                              |                                                        |
|                                  | 676                                       | 680                                       | -4  | 675                                                   | 674.6                                              |                                                        |
|                                  | 694                                       | 704                                       | -10 | 693                                                   | 692.6                                              |                                                        |
|                                  | 754                                       | 761                                       | -7  | 755                                                   | 755.3                                              |                                                        |
|                                  | 843                                       | 847                                       | -4  | -                                                     | -                                                  | -                                                      |
|                                  | 902                                       | 874                                       | 27  | -                                                     | -                                                  | -                                                      |
| <sup>4</sup> F <sub>7/2</sub>    | 13514                                     | 13521                                     | -7  | 13515                                                 | 13514.8                                            |                                                        |
|                                  | 590                                       | 591                                       | -1  | 591                                                   | 590.8                                              |                                                        |
| <sup>4</sup> S <sub>3/2</sub>    | 671                                       | 670                                       | 1   | 671                                                   | 670.9                                              |                                                        |
|                                  | 676                                       | 678                                       | -2  | 677                                                   | 676.7                                              |                                                        |
| <sup>4</sup> F <sub>7/2</sub>    | 711                                       | 690                                       | 21  | 710                                                   | 710.1                                              |                                                        |
|                                  | 715                                       | 725                                       | -10 | 714                                                   | 714.2                                              |                                                        |
| <sup>4</sup> F <sub>9/2</sub>    | 14834                                     | 14840                                     | -6  | 14835                                                 | 14834.7                                            |                                                        |
|                                  | 861                                       | 860                                       | 1   | 860                                                   | 861.8                                              |                                                        |
|                                  | 892                                       | 891                                       | 1   | 891                                                   | 890.6                                              |                                                        |

## Appendix II. (cont.)

| SLJ <sup>a</sup><br><u>State</u>                                  | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> )       | Calc. <sup>c</sup><br>(cm <sup>-1</sup> )       | O-C                                | Caspers<br>et al. <sup>d</sup><br>(cm <sup>-1</sup> ) | Wong<br>et al. <sup>e</sup><br>(cm <sup>-1</sup> )   |
|-------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| <sup>4</sup> F <sub>9/2</sub>                                     | 14926<br>959                                    | 14925<br>955                                    | 1<br>4                             | 14927<br>958                                          | 14959.4                                              |
| <sup>2</sup> H <sub>11/2</sub>                                    | 15997<br>16033<br>046<br>060<br>100<br>165      | 16025<br>043<br>049<br>067<br>093<br>136        | -28<br>-10<br>-3<br>-7<br>7<br>29  | 15998<br>16033<br>045<br>059<br>103<br>-              | 15998.1<br>-<br>16046.4<br>-<br>-<br>-               |
| <sup>4</sup> G <sub>5/2</sub> ,<br><sup>4</sup> G <sub>7/2</sub>  | 17306<br>316<br>363<br>511<br>518<br>571<br>605 | 17301<br>318<br>360<br>492<br>512<br>567<br>607 | 5<br>-2<br>3<br>19<br>6<br>4<br>-2 | 17304<br>315<br>364<br>512<br>520<br>570<br>601       | 17304.6<br>316.0<br>362.9<br>509.2<br>520.3<br>603.2 |
| <sup>4</sup> G <sub>7/2</sub>                                     | 19147<br>235<br>252<br>324                      | 19134<br>243<br>266<br>322                      | 13<br>-8<br>-14<br>2               | 19147<br>235<br>251<br>323                            | 19147.4<br>236.2<br>252.1<br>325.4                   |
| <sup>2</sup> K <sub>13/2</sub> ,<br><sup>4</sup> G <sub>9/2</sub> | 19567<br>615<br>651<br>686                      | 19570<br>622<br>638<br>681                      | -3<br>-7<br>13<br>5                | 19568<br>617<br>651<br>685                            | 19568.2<br>-<br>650.9<br>686.2                       |

## Appendix II. (cont.)

| <u>SLJ<sup>a</sup></u>           | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> | <u>O-C</u> | <u>Caspers<br/>et al.<sup>d</sup></u> | <u>Wong<br/>et al.<sup>e</sup></u> |
|----------------------------------|--------------------------|--------------------------|------------|---------------------------------------|------------------------------------|
| <u>State</u>                     | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> |            | <u>(cm<sup>-1</sup>)</u>              | <u>(cm<sup>-1</sup>)</u>           |
| <sup>2</sup> K <sub>13/2</sub> , | 19704                    | 19696                    | 8          | 19702                                 | 19704.0                            |
| <sup>4</sup> G <sub>9/2</sub>    | -                        | 727                      |            | -                                     | -                                  |
|                                  | 741                      | 741                      | 0          | 739                                   | 739.4                              |
|                                  | 799                      | 786                      | 13         | 801                                   |                                    |
|                                  | 835                      | 834                      | 1          | 839                                   |                                    |
|                                  | -                        | 892                      |            | -                                     |                                    |
|                                  | -                        | 946                      |            | -                                     |                                    |
|                                  | 960                      | 970                      | -10        | -                                     |                                    |
| <sup>2</sup> G <sub>9/2</sub>    | 21155                    | 21151                    | 4          | 21158                                 |                                    |
|                                  | 176                      | 180                      | -4         | 176                                   |                                    |
|                                  | 198                      | 202                      | -4         | 201                                   |                                    |
|                                  | 232                      | 242                      | -10        | 234                                   |                                    |
|                                  | 252                      | 271                      | -19        | 254                                   |                                    |
| <sup>2</sup> D <sub>3/2</sub>    | 21338                    | 21337                    | 1          | 21339                                 |                                    |
|                                  | 353                      | 355                      | -2         | 351                                   |                                    |
| <sup>4</sup> G <sub>11/2</sub> , | 21542                    | 21535                    | 7          |                                       |                                    |
| <sup>2</sup> K <sub>15/2</sub>   | -                        | 618                      |            |                                       |                                    |
|                                  | 633                      | 630                      | 3          |                                       |                                    |
|                                  | 718                      | 704                      | 14         |                                       |                                    |
|                                  | -                        | 754                      |            |                                       |                                    |
|                                  | 768                      | 767                      | 1          |                                       |                                    |
|                                  | -                        | 783                      |            |                                       |                                    |
|                                  | 807                      | 810                      | -3         |                                       |                                    |
|                                  | -                        | 821                      |            |                                       |                                    |
|                                  | 846                      | 861                      | -15        |                                       |                                    |
|                                  | -                        | 884                      |            |                                       |                                    |

## Appendix II. (cont.)

| <u>SLJ<sup>a</sup></u> | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            | <u>Caspers<br/>et al.<sup>d</sup></u> |
|------------------------|--------------------------|--------------------------|------------|---------------------------------------|
| <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>o-c</u> | <u>(cm<sup>-1</sup>)</u>              |
| $^4G_{11/2}$           | -                        | 21929                    |            |                                       |
| $^2K_{15/2}$           | -                        | 957                      |            |                                       |
|                        | 21992                    | 989                      | 3          |                                       |
| $^2P_{1/2}$            | 23473                    | 23463                    | 10         | 23468                                 |
| $^2D_{5/2}$            | 23991                    | 23985                    | 6          | 23991                                 |
|                        | 24033                    | 24035                    | -2         |                                       |
|                        | 080                      | 075                      | 5          |                                       |
| $^2P_{3/2}$            | 26378                    | 26389                    | -11        |                                       |
|                        | 426                      | 424                      | 2          |                                       |
| $^4D_{3/2}$            | 28341                    | 28342                    | -1         |                                       |
|                        | 374                      | 371                      | 3          |                                       |
| $^4D_{5/2}$            | 28501                    | 28500                    | 1          |                                       |
|                        | 525                      | 526                      | -1         |                                       |
|                        | 676                      | 672                      | 4          |                                       |
| $^4D_{1/2}$            | 28962                    | 28943                    | 19         |                                       |
| $^2I_{11/2}$           | 29463                    | 29467                    | -4         |                                       |
|                        | 489                      | 476                      | 13         |                                       |
|                        | 568                      | 558                      | 10         |                                       |
|                        | 644                      | 646                      | -2         |                                       |
|                        | -                        | 648                      |            |                                       |
|                        | 773                      | 777                      | -4         |                                       |

## Appendix II. (cont.)

| SLJ <sup>a</sup><br><u>State</u> | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C | SLJ <sup>a</sup>                 | Obsd. <sup>b</sup><br>(vac cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C |
|----------------------------------|-------------------------------------------|-------------------------------------------|-----|----------------------------------|-----------------------------------------------|-------------------------------------------|-----|
| <sup>2</sup> L <sub>15/2</sub> , | 30275                                     | 30270                                     | 5   | <sup>2</sup> L <sub>17/2</sub>   | -                                             | 31987                                     |     |
| <sup>4</sup> D <sub>7/2</sub>    | 318                                       | 317                                       | 1   |                                  | -                                             | 32008                                     |     |
|                                  | -                                         | 363                                       |     |                                  | -                                             | 030                                       |     |
|                                  | -                                         | 471                                       |     |                                  | -                                             | 074                                       |     |
|                                  | 517                                       | 523                                       | -6  |                                  | -                                             | 172                                       |     |
|                                  | -                                         | 536                                       |     |                                  | -                                             |                                           |     |
|                                  | 576                                       | 593                                       | -17 | <sup>2</sup> H <sub>9/2</sub>    | 33030                                         | 33036                                     | -6  |
|                                  | -                                         | 600                                       |     |                                  | 107                                           | 117                                       | -10 |
|                                  | 631                                       | 644                                       | -13 |                                  | 181                                           | 178                                       | 3   |
|                                  | 682                                       | 691                                       | -9  |                                  | 228                                           | 226                                       | 2   |
|                                  | 719                                       | 722                                       | -3  |                                  | 255                                           | 255                                       | 0   |
|                                  | 807                                       | 796                                       | 11  | <sup>2</sup> D <sub>3/2</sub>    | 33619                                         | 33616                                     | 3   |
| <sup>2</sup> I <sub>13/2</sub>   | -                                         | 30860                                     |     |                                  | 649                                           | 647                                       | 2   |
|                                  | 30893                                     | 898                                       | -5  |                                  |                                               |                                           |     |
|                                  | 933                                       | 948                                       | -15 | <sup>2</sup> H <sub>11/2</sub> , | 34292                                         | 34264                                     | 28  |
|                                  | 994                                       | 31010                                     | -16 | <sup>2</sup> D <sub>5/2</sub>    | 380                                           | 368                                       | 12  |
|                                  | 31030                                     | 31029                                     | 1   |                                  | 419                                           | 443                                       | -24 |
|                                  | 068                                       | 054                                       | 14  |                                  | -                                             | 501                                       |     |
|                                  | -                                         | 118                                       |     |                                  | 521                                           | 534                                       | -13 |
|                                  |                                           |                                           |     |                                  | -                                             | 578                                       |     |
| <sup>2</sup> L <sub>17/2</sub>   | 31781                                     | 31768                                     | 13  |                                  | 678                                           | 659                                       | 19  |
|                                  | -                                         | 817                                       |     |                                  | 706                                           | 723                                       | -17 |
|                                  | 859                                       | 851                                       | 8   |                                  | -                                             | 811                                       |     |
|                                  | -                                         | 983                                       |     |                                  |                                               |                                           |     |

## Appendix II. (cont.)

| SLJ <sup>a</sup><br>State | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | O-C | SLJ <sup>a</sup> | Obsd. <sup>b</sup><br>(vac cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | O-C |
|---------------------------|-------------------------------------------|-------------------------------------------|-----|------------------|-----------------------------------------------|-------------------------------------------|-----|
| $^2F_{5/2}$               | 38690                                     | 38708                                     | -18 | $^2G_{7/2}$      | 48839                                         | 48852                                     | -13 |
|                           | 735                                       | 764                                       | -29 |                  | 908                                           | 868                                       | 40  |
|                           | 841                                       | 811                                       | 30  |                  | 977                                           | 979                                       | -2  |
|                           |                                           |                                           |     |                  | 49088                                         | 49071                                     | 17  |
| $^2F_{7/2}$               | 40103                                     | 40104                                     | -1  | $^2F_{7/2}$      | -                                             | 66565                                     |     |
|                           | -                                         | 120                                       |     |                  | -                                             | 716                                       |     |
|                           | 155                                       | 176                                       | -21 |                  | -                                             | 772                                       |     |
|                           | 288                                       | 247                                       | 41  |                  | -                                             | 916                                       |     |
| $^2G_{9/2}$               | -                                         | 47867                                     |     | $^2F_{5/2}$      | -                                             | 67856                                     |     |
|                           | 47894                                     | 887                                       | 7   |                  | -                                             | 900                                       |     |
|                           | 937                                       | 954                                       | -17 |                  | -                                             | 68126                                     |     |
|                           | 999                                       | 48021                                     | -22 |                  | -                                             |                                           |     |
|                           | 48043                                     | 056                                       | -13 |                  | -                                             |                                           |     |

<sup>a</sup>The principal component of the eigenvector is given.

<sup>b</sup>(cm<sup>-1</sup> vac). Components of  $^4I_{9/2}$  and  $^4I_{11/2}$  taken from ref. 52.

<sup>c</sup>Energy level parameters are given in Table 4.

<sup>d</sup>Ref. 52.

<sup>e</sup>Ref. 6.

<sup>f</sup>Ref. 54.

Appendix III.  
Computed Energy Level Structure for  $\text{Pr}^{3+}:\text{LaF}_3$

---

| <u>SLJ<sup>a</sup></u><br><u>State</u> | <u>Calc.<sup>b</sup></u><br><u>(cm<sup>-1</sup>)</u> | <u>SLJ<sup>a</sup></u><br><u>State</u> | <u>Calc.<sup>b</sup></u><br><u>(cm<sup>-1</sup>)</u> | <u>SLJ<sup>a</sup></u><br><u>State</u> | <u>Calc.<sup>b</sup></u><br><u>(cm<sup>-1</sup>)</u> | <u>SLJ<sup>a</sup></u><br><u>State</u> | <u>Calc.<sup>b</sup></u><br><u>(cm<sup>-1</sup>)</u> |
|----------------------------------------|------------------------------------------------------|----------------------------------------|------------------------------------------------------|----------------------------------------|------------------------------------------------------|----------------------------------------|------------------------------------------------------|
| $^5\text{I}_4$                         | 0                                                    | $^5\text{I}_6$                         | 3376                                                 | $^5\text{I}_8$                         | 6556                                                 | $^5\text{F}_2$                         | 13156                                                |
|                                        | 135                                                  |                                        | 3389                                                 |                                        | 6605                                                 |                                        | 170                                                  |
|                                        | 189                                                  |                                        | 3392                                                 |                                        | 6621                                                 |                                        |                                                      |
|                                        | 233                                                  |                                        | 3413                                                 |                                        | 6653                                                 | $^5\text{F}_3$                         | 13853                                                |
|                                        | 266                                                  |                                        | 3413                                                 |                                        | 6672                                                 |                                        | 900                                                  |
|                                        | 294                                                  |                                        | 3416                                                 |                                        | 6746                                                 |                                        | 918                                                  |
|                                        | 332                                                  |                                        | 3439                                                 |                                        | 6763                                                 |                                        | 952                                                  |
|                                        | 437                                                  |                                        | 3462                                                 |                                        | 6824                                                 |                                        | 965                                                  |
|                                        | 474                                                  |                                        | 3470                                                 |                                        | 6827                                                 |                                        | 998                                                  |
|                                        |                                                      |                                        |                                                      |                                        | 6857                                                 |                                        | 14020                                                |
| $^5\text{I}_5$                         | 1667                                                 | $^5\text{I}_7$                         | 5042                                                 |                                        | 6959                                                 |                                        |                                                      |
|                                        | 1710                                                 |                                        | 5045                                                 |                                        | 6977                                                 | $^5\text{S}_2$                         | 14525                                                |
|                                        | 1717                                                 |                                        | 5059                                                 |                                        | 7060                                                 |                                        | 529                                                  |
|                                        | 1769                                                 |                                        | 5060                                                 |                                        | 7063                                                 |                                        | 529                                                  |
|                                        | 1769                                                 |                                        | 5066                                                 |                                        | 7129                                                 |                                        | 529                                                  |
|                                        | 1810                                                 |                                        | 5074                                                 |                                        | 7131                                                 |                                        | 530                                                  |
|                                        | 1812                                                 |                                        | 5078                                                 |                                        | 7152                                                 |                                        |                                                      |
|                                        | 1821                                                 |                                        | 5084                                                 |                                        |                                                      | $^5\text{F}_4$                         | 14804                                                |
|                                        | 1828                                                 |                                        | 5086                                                 | $^5\text{F}_1$                         | 12650                                                |                                        | 837                                                  |
|                                        | 1829                                                 |                                        | 5090                                                 |                                        | 671                                                  |                                        | 892                                                  |
|                                        | 1845                                                 |                                        | 5110                                                 |                                        | 684                                                  |                                        | 894                                                  |
|                                        |                                                      |                                        | 5114                                                 |                                        |                                                      |                                        | 895                                                  |
| $^5\text{I}_6$                         | 3285                                                 |                                        | 5116                                                 | $^5\text{F}_2$                         | 13031                                                |                                        | 898                                                  |
|                                        | 3322                                                 |                                        | 5143                                                 |                                        | 076                                                  |                                        | 926                                                  |
|                                        | 3326                                                 |                                        | 5149                                                 |                                        | 091                                                  |                                        | 965                                                  |
|                                        | 3369                                                 |                                        |                                                      |                                        |                                                      |                                        | 998                                                  |

## Appendix III. (cont.)

| SLJ <sup>a</sup><br><u>State</u> |       | Calc. <sup>b</sup><br><u>(cm<sup>-1</sup>)</u> |       | SLJ <sup>a</sup><br><u>State</u> |                             | Calc. <sup>b</sup><br><u>(cm<sup>-1</sup>)</u> |  | SLJ <sup>a</sup><br><u>State</u> |       | Calc. <sup>b</sup><br><u>(cm<sup>-1</sup>)</u> |  |
|----------------------------------|-------|------------------------------------------------|-------|----------------------------------|-----------------------------|------------------------------------------------|--|----------------------------------|-------|------------------------------------------------|--|
| <sup>5</sup> F <sub>5</sub>      | 16145 | <sup>5</sup> G <sub>4</sub> ,                  | 18045 | <sup>5</sup> G <sub>3</sub>      | <sup>3</sup> K <sub>7</sub> | 18679                                          |  | <sup>5</sup> G <sub>5</sub> ,    | 20471 |                                                |  |
|                                  | 148   | <sup>5</sup> G <sub>3</sub> ,                  | 066   |                                  |                             | 689                                            |  | <sup>5</sup> G <sub>4</sub>      | 492   |                                                |  |
|                                  | 149   | <sup>3</sup> K <sub>7</sub>                    | 068   |                                  |                             |                                                |  |                                  | 532   |                                                |  |
|                                  | 151   |                                                | 076   | <sup>3</sup> K <sub>8</sub>      |                             | 19854                                          |  |                                  | 541   |                                                |  |
|                                  | 212   |                                                | 079   |                                  |                             | 859                                            |  |                                  | 579   |                                                |  |
|                                  | 226   |                                                | 104   |                                  |                             | 870                                            |  |                                  | 592   |                                                |  |
|                                  | 249   |                                                | 104   |                                  |                             | 872                                            |  |                                  | 611   |                                                |  |
|                                  | 250   |                                                | 126   |                                  |                             | 885                                            |  |                                  | 664   |                                                |  |
|                                  | 273   |                                                | 147   |                                  |                             | 890                                            |  |                                  | 700   |                                                |  |
|                                  | 307   |                                                | 252   |                                  |                             | 928                                            |  |                                  | 713   |                                                |  |
|                                  | 322   |                                                | 316   |                                  |                             | 951                                            |  |                                  |       |                                                |  |
|                                  |       |                                                | 364   |                                  |                             | 973                                            |  | <sup>3</sup> G <sub>3</sub>      | 21968 |                                                |  |
| <sup>3</sup> K <sub>6</sub>      | 17071 |                                                | 381   |                                  |                             | 974                                            |  |                                  | 974   |                                                |  |
|                                  | 088   |                                                | 408   |                                  |                             | 20005                                          |  |                                  | 22020 |                                                |  |
|                                  | 088   |                                                |       |                                  |                             | 012                                            |  |                                  | 040   |                                                |  |
|                                  | 091   | <sup>5</sup> G <sub>3</sub> ,                  | 18426 |                                  |                             | 035                                            |  |                                  | 062   |                                                |  |
|                                  | 092   | <sup>3</sup> K <sub>7</sub>                    | 426   |                                  |                             | 036                                            |  |                                  | 070   |                                                |  |
|                                  | 093   |                                                | 444   |                                  |                             | 107                                            |  |                                  | 117   |                                                |  |
|                                  | 104   |                                                | 461   |                                  |                             | 111                                            |  |                                  |       |                                                |  |
|                                  | 106   |                                                | 500   |                                  |                             | 136                                            |  | <sup>5</sup> G <sub>5</sub> ,    | 22424 |                                                |  |
|                                  | 109   |                                                | 508   |                                  |                             |                                                |  | <sup>5</sup> G <sub>6</sub>      | 429   |                                                |  |
|                                  | 115   |                                                | 510   | <sup>5</sup> G <sub>5</sub> ,    |                             | 20243                                          |  |                                  | 433   |                                                |  |
|                                  | 123   |                                                | 535   | <sup>5</sup> G <sub>4</sub>      |                             | 260                                            |  |                                  | 461   |                                                |  |
|                                  | 123   |                                                | 536   |                                  |                             | 294                                            |  |                                  | 469   |                                                |  |
|                                  | 137   |                                                | 545   |                                  |                             | 303                                            |  |                                  | 480   |                                                |  |
|                                  |       |                                                | 557   |                                  |                             | 20361                                          |  |                                  | 500   |                                                |  |
| <sup>5</sup> G <sub>2</sub>      | 17904 |                                                | 559   |                                  |                             | 365                                            |  |                                  | 503   |                                                |  |
|                                  | 932   |                                                | 611   |                                  |                             | 366                                            |  |                                  | 512   |                                                |  |
|                                  | 949   |                                                | 657   |                                  |                             | 387                                            |  |                                  | 539   |                                                |  |
|                                  | 18007 |                                                | 665   |                                  |                             | 445                                            |  |                                  | 563   |                                                |  |
|                                  | 017   |                                                |       |                                  |                             | 463                                            |  |                                  | 575   |                                                |  |

## Appendix III. (cont.)

| <u>SLJ<sup>a</sup></u> | <u>Calc.<sup>b</sup></u> | <u>SLJ<sup>a</sup></u> | <u>Calc.<sup>b</sup></u> | <u>SLJ<sup>a</sup></u> | <u>Calc.<sup>b</sup></u>    |
|------------------------|--------------------------|------------------------|--------------------------|------------------------|-----------------------------|
| <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>State</u>           | <u>(cm<sup>-1</sup>)</u>    |
| $^5G_5$ ,              | 22663                    | $^3L_7$                | 24028                    | $^3H_6$ ,              | 24992                       |
| $^5G_6$                | 683                      |                        | 043                      | $^3G_4$ ,              | 25014                       |
|                        | 696                      |                        | 046                      | $^3L_8$                | 018                         |
|                        | 696                      |                        |                          |                        | 023                         |
|                        | 754                      | $^3p_1$                | 24289                    |                        | 038                         |
|                        | 769                      |                        | 299                      |                        | 068                         |
|                        | 779                      |                        | 306                      |                        | 071                         |
|                        | 827                      |                        |                          |                        | 073                         |
|                        | 831                      | $^3H_6$ ,              | 24635                    |                        | 122                         |
|                        | 895                      | $^3G_4$ ,              | 661                      |                        | 136                         |
|                        | 909                      | $^3L_8$                | 664                      |                        | 156                         |
|                        | 942                      |                        | 678                      |                        | 157                         |
|                        |                          |                        | 695                      |                        | 171                         |
| $^3D_2$                | 23189                    |                        | 708                      |                        | 172                         |
|                        | 253                      |                        | 762                      |                        | 224                         |
|                        | 288                      |                        | 772                      |                        | 263                         |
|                        | 327                      |                        | 780                      |                        |                             |
|                        | 327                      |                        | 785                      |                        | (25816-50000 <sup>c</sup> ) |
|                        |                          |                        | 810                      |                        |                             |
| $^3L_7$                | 23699                    |                        | 817                      |                        |                             |
|                        | 701                      |                        | 834                      |                        |                             |
|                        | 828                      |                        | 849                      |                        |                             |
|                        | 840                      |                        | 869                      |                        |                             |
|                        | 841                      |                        | 874                      |                        |                             |
|                        | 887                      |                        | 893                      |                        |                             |
|                        | 889                      |                        | 24905                    |                        |                             |
|                        | 954                      |                        | 917                      |                        |                             |
|                        | 956                      |                        | 918                      |                        |                             |
|                        | 965                      |                        | 924                      |                        |                             |
|                        | 968                      |                        | 945                      |                        |                             |
|                        | 24022                    |                        | 950                      |                        |                             |

## Appendix III. (cont.)

---

<sup>a</sup>The leading component of the state eigenvector is indicated.

<sup>b</sup>The energy level parameters (interpolated) used to compute these level energies are given in Table 4.

<sup>c</sup>Since there are no experimental data available, the tabulation has been arbitrarily stopped at 25263  $\text{cm}^{-1}$ . At higher energies, starting with the next level at 25816  $\text{cm}^{-1}$ , the computed density of states is relatively high. Some additional results are given for  $\text{Pm}^{3+}:\text{LaCl}_3$  in Ref. 56. Figure 21 indicates the larger gaps in energy where no crystal-field components are computed to occur.

Appendix IV.  
Experimental and Computed Energy Level Structure of  $\text{Sm}^{3+}:\text{LaF}_3$

| SLJ <sup>a</sup>    | Expt. <sup>b</sup>  | Calc. <sup>c</sup>  | 0-C | Rast <sup>d</sup>   |                     |
|---------------------|---------------------|---------------------|-----|---------------------|---------------------|
|                     |                     |                     |     | et al.              | Dieke <sup>e</sup>  |
| $^6\text{H}_{5/2}$  | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |     | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |
|                     | 0                   | -6                  | 6   | 0                   | 0                   |
|                     | 44                  | 53                  | -9  | 48                  | 44                  |
|                     | 159                 | 135                 | 24  | 115                 | 159                 |
| $^6\text{H}_{7/2}$  | 1000                | 990                 | 10  | 1000                | 1003                |
|                     | 1044                | 1027                | 17  | 044                 | 046                 |
|                     | 1185                | 1205                | -20 | 185                 | 100                 |
|                     | 1280                | 1262                | 18  | 280                 | 187                 |
| $^6\text{H}_{9/2}$  | 2209                | 2193                | 16  | 2209                | 2213                |
|                     | 244                 | 233                 | 11  | 244                 | 247                 |
|                     | 342                 | 332                 | 10  | 342                 | 344                 |
|                     | 409                 | 408                 | 1   | 409                 | 404                 |
|                     | 473                 | 468                 | 5   | 473                 | 493                 |
| $^6\text{H}_{11/2}$ | 3520                | 3510                | 10  | 3517                |                     |
|                     | 568                 | 553                 | 15  | 567                 |                     |
|                     | 651                 | 628                 | 23  | 647                 |                     |
|                     | 671                 | 667                 | 4   | 670                 |                     |
|                     | 727                 | 739                 | -12 | 726                 |                     |
|                     | 791 <sup>d</sup>    | 793                 | -2  | 791                 |                     |
| $^6\text{H}_{13/2}$ | 4972                | 4947                | 25  | 4971                | 4969                |
|                     | 982                 | 975                 | 7   | 982                 |                     |
|                     | 5007                | 5004                | 3   | 5007                | 5005                |
|                     | 046                 | 042                 | 4   | 047                 | 044                 |
|                     | 057                 | 059                 | -2  | 057                 |                     |
|                     | 122                 | 114                 | 8   | 122                 |                     |
|                     | 160                 | 170                 | -10 | 160                 |                     |

## Appendix IV. (cont.)

| SLJ <sup>a</sup><br>State        | Expt. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C | Rast <sup>d</sup>             |                                           |
|----------------------------------|-------------------------------------------|-------------------------------------------|-----|-------------------------------|-------------------------------------------|
|                                  |                                           |                                           |     | et al.<br>(cm <sup>-1</sup> ) | Dieke <sup>e</sup><br>(cm <sup>-1</sup> ) |
| <sup>6</sup> H <sub>15/2</sub> , | 6309                                      | 6300                                      | 9   | —                             |                                           |
| <sup>6</sup> F <sub>1/2</sub>    | 341                                       | 334                                       | 7   | 6346                          |                                           |
|                                  | 406                                       | 417                                       | -11 | 408                           | 6404                                      |
|                                  | 460                                       | 465                                       | -5  | 454                           |                                           |
|                                  | —                                         | 472                                       |     | 462                           |                                           |
|                                  | —                                         | 553                                       |     | 492                           |                                           |
|                                  | 568                                       | 578                                       | -10 | 538                           |                                           |
|                                  | 609                                       | 605                                       | 4   | 571                           |                                           |
|                                  | —                                         | 666                                       |     |                               |                                           |
| <sup>6</sup> F <sub>3/2</sub>    | 6707                                      | 6724                                      | -17 | 6707                          |                                           |
|                                  | —                                         | 738                                       |     | —                             |                                           |
| <sup>6</sup> F <sub>5/2</sub>    | 7177                                      | 7177                                      | 0   | 7174                          | 7173                                      |
|                                  | 184                                       | 190                                       | -6  | 184                           | 180                                       |
|                                  | 223                                       | 239                                       | -16 | 225                           |                                           |
| <sup>6</sup> F <sub>7/2</sub>    | 7992                                      | 8008                                      | -16 | 7993                          | 7987                                      |
|                                  | 8041                                      | 026                                       | 15  | 8042                          | 8034                                      |
|                                  | 060                                       | 059                                       | 1   | 059                           | 054                                       |
|                                  | 092                                       | 108                                       | -16 | 092                           | 086                                       |
| <sup>6</sup> F <sub>9/2</sub>    | 9170                                      | 9173                                      | -3  | 9170                          | 9162                                      |
|                                  | 178                                       | 189                                       | -11 | 180                           | 173                                       |
|                                  | 228                                       | 223                                       | 5   | 231                           | 222                                       |
|                                  | 252                                       | 243                                       | 9   | 254                           | 247                                       |
|                                  | 268                                       | 281                                       | -13 | 270                           | 262                                       |
| <sup>6</sup> F <sub>11/2</sub>   | 10561                                     | 10567                                     | -6  | 10559                         |                                           |
|                                  | 584                                       | 583                                       | 1   | 581                           |                                           |
|                                  | 592                                       | 590                                       | 2   | 590                           |                                           |
|                                  | 603                                       | 621                                       | -18 | 602                           |                                           |
|                                  | 613                                       | 633                                       | -20 |                               |                                           |
|                                  | 644                                       | 656                                       | -12 |                               |                                           |

## Appendix IV. (cont.)

| SLJ <sup>a</sup>                 | Expt. <sup>b</sup>  | Calc. <sup>c</sup>  | 0-C | Rast <sup>d</sup>             | Dieke <sup>e</sup>  |
|----------------------------------|---------------------|---------------------|-----|-------------------------------|---------------------|
| State                            | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | 0-C | et al.<br>(cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |
| <sup>4</sup> G <sub>5/2</sub>    | 17858               | 17863               | -5  |                               | 17858               |
|                                  | 949                 | 960                 | -11 |                               | 949                 |
|                                  | (18045)             | 18087               |     |                               | 18046               |
| <sup>4</sup> F <sub>3/2</sub>    | 18924               | 18933               | -9  |                               | 18924               |
|                                  | 942                 | 951                 | -9  |                               | 942                 |
| <sup>4</sup> G <sub>7/2</sub>    | 20037               | 20041               | -4  |                               | 20037               |
|                                  | 093                 | 094                 | -1  |                               | 093                 |
|                                  | 112                 | 123                 | -11 |                               | 111                 |
|                                  | 164                 | 168                 | -4  |                               |                     |
| <sup>4</sup> I <sub>9/2</sub>    | 20416               | 20406               | 10  |                               | 20417               |
|                                  | 472                 | 472                 | 0   |                               | 471                 |
|                                  | 499                 | 505                 | -6  |                               | 497                 |
|                                  | 522                 | 531                 | -9  |                               | 523                 |
|                                  | 570                 | 551                 | 19  |                               |                     |
| <sup>4</sup> M <sub>15/2</sub> , | -                   | 20685               |     |                               |                     |
| <sup>4</sup> I <sub>11/2</sub>   | -                   | 770                 |     |                               |                     |
|                                  | -                   | 808                 |     |                               |                     |
|                                  | -                   | 858                 |     |                               |                     |
|                                  | -                   | 892                 |     |                               |                     |
|                                  | -                   | 904                 |     |                               |                     |
|                                  | -                   | 922                 |     |                               | 20944               |
|                                  | -                   | 974                 |     |                               |                     |
|                                  | -                   | 21004               |     |                               |                     |
|                                  | -                   | 071                 |     |                               |                     |
|                                  | -                   | 164                 |     |                               |                     |
|                                  | -                   | 179                 |     |                               |                     |
|                                  | -                   | 248                 |     |                               |                     |
|                                  | -                   | 265                 |     |                               |                     |

| SLJ <sup>a</sup><br>State        | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C | Dieke <sup>e</sup><br>(cm <sup>-1</sup> ) | SLJ <sup>a</sup><br>State        | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C | Dieke <sup>e</sup><br>(cm <sup>-1</sup> ) |
|----------------------------------|-------------------------------------------|-------------------------------------------|-----|-------------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|-----|-------------------------------------------|
| <sup>4</sup> I <sub>13/2</sub>   | 21520                                     | 21541                                     | -21 | 21520                                     | <sup>4</sup> M <sub>17/2</sub> , | -                                         | 23116                                     |     |                                           |
|                                  | 602                                       | 602                                       | 0   |                                           | <sup>4</sup> G <sub>9/2</sub> ,  | -                                         | 158                                       |     |                                           |
|                                  | 636                                       | 616                                       | 20  | 637                                       | <sup>4</sup> I <sub>15/2</sub>   |                                           |                                           |     |                                           |
|                                  | 665                                       | 649                                       | 16  | 647                                       | <sup>4</sup> M <sub>19/2</sub> , | 23988                                     | 23989                                     | -1  |                                           |
|                                  | -                                         | 652                                       |     |                                           | <sup>6</sup> P <sub>5/2</sub>    | 24022                                     | 24035                                     | -13 |                                           |
|                                  | 674                                       | 666                                       | 8   |                                           |                                  | 031                                       | 068                                       | -37 |                                           |
|                                  | 706                                       | 684                                       | 22  | 709                                       |                                  | 064                                       | 080                                       | -16 |                                           |
| <sup>4</sup> F <sub>3/2</sub>    | 22164                                     | 22178                                     | -14 | 22164                                     |                                  | 084                                       | 101                                       | -17 | 24084                                     |
|                                  | 207                                       | 213                                       | -6  | 207                                       |                                  | 119                                       | 126                                       | -7  | 119                                       |
|                                  | 240                                       | 254                                       | -14 | 241                                       |                                  | 135                                       | 134                                       | 1   |                                           |
|                                  |                                           |                                           |     |                                           |                                  | 153                                       | 162                                       | -9  | 153                                       |
| <sup>4</sup> M <sub>17/2</sub> , | 22501                                     | 22500                                     | 1   | 22501                                     |                                  | -                                         | 169                                       |     |                                           |
| <sup>4</sup> G <sub>9/2</sub> ,  | 531                                       | 539                                       | -8  | 532                                       |                                  | -                                         | 181                                       |     |                                           |
| <sup>4</sup> I <sub>15/2</sub>   | 542                                       | 552                                       | -10 |                                           |                                  | -                                         | 186                                       |     |                                           |
|                                  | -                                         | 573                                       |     |                                           |                                  | -                                         | 207                                       |     |                                           |
|                                  | 579                                       | 581                                       | -2  |                                           |                                  | -                                         | 218                                       |     |                                           |
|                                  | 628                                       | 630                                       | -2  |                                           | <sup>4</sup> L <sub>13/2</sub>   | 24608                                     | 24616                                     | -8  | 24607                                     |
|                                  | 695                                       | 693                                       | 2   |                                           |                                  | 629                                       | 632                                       | -3  | 628                                       |
|                                  | -                                         | 738                                       |     |                                           |                                  | 631                                       | 642                                       | -11 | 631                                       |
|                                  | -                                         | 770                                       |     |                                           |                                  | 644                                       | 658                                       | -14 | 643                                       |
|                                  | 808                                       | 801                                       | 7   |                                           |                                  | 679                                       | 689                                       | -10 | 678                                       |
|                                  | 829                                       | 834                                       | -5  |                                           |                                  | 683                                       | 695                                       | -12 | 683                                       |
|                                  | -                                         | 867                                       |     |                                           |                                  | 710                                       | 720                                       | -10 | 709                                       |
|                                  | -                                         | 912                                       |     |                                           |                                  |                                           |                                           |     |                                           |
|                                  | 942                                       | 943                                       | -1  |                                           | <sup>4</sup> F <sub>7/2</sub>    | 24911                                     | 24900                                     | 11  | 24911                                     |
|                                  | -                                         | 982                                       |     |                                           |                                  | 993                                       | 987                                       | 6   | 993                                       |
|                                  | -                                         | 23020                                     |     |                                           |                                  | 25007                                     | 25002                                     | 5   | 25007                                     |
|                                  | -                                         | 023                                       |     |                                           |                                  | 064                                       | 071                                       | -7  | 064                                       |
|                                  | -                                         | 036                                       |     |                                           | <sup>6</sup> P <sub>3/2</sub>    | 081                                       | 088                                       | -7  |                                           |
|                                  | -                                         | 054                                       |     |                                           |                                  | -                                         | 106                                       |     |                                           |
|                                  | -                                         | 083                                       |     |                                           |                                  |                                           |                                           |     |                                           |

## Appendix IV. (cont.)

| SLJ <sup>a</sup><br>State        | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | O-C   | Dieke <sup>e</sup><br>(cm <sup>-1</sup> ) | SLJ <sup>a</sup><br>State        | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | O-C | Dieke <sup>e</sup><br>(cm <sup>-1</sup> ) |
|----------------------------------|-------------------------------------------|-------------------------------------------|-------|-------------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|-----|-------------------------------------------|
| <sup>4</sup> G <sub>11/2</sub> , | 25166                                     | 25169                                     | -3    |                                           | <sup>4</sup> L <sub>17/2</sub> , | 26702                                     | 26694                                     | 8   | 26699                                     |
| <sup>4</sup> M <sub>21/2</sub> , | 182                                       | 177                                       | 5     |                                           | <sup>6</sup> P <sub>7/2</sub>    | 712                                       | 705                                       | 7   | 709                                       |
| <sup>4</sup> M <sub>15/2</sub> , | 204                                       | 203                                       | 1     |                                           |                                  | 717                                       | 718                                       | -1  | 712                                       |
| <sup>4</sup> H <sub>11/2</sub>   | 216                                       | 217                                       | -1    |                                           |                                  | 743                                       | 751                                       | -8  | 758                                       |
| -                                | 220                                       |                                           |       |                                           |                                  | 776                                       | 763                                       | 13  | 776                                       |
| -                                | 243                                       |                                           |       |                                           |                                  | 792                                       | 777                                       | 15  | 791                                       |
| 248                              | 259                                       | -11                                       |       |                                           |                                  | 797                                       | 800                                       | -3  | 796                                       |
| 282                              | 285                                       | -3                                        |       |                                           |                                  | -                                         | 803                                       |     |                                           |
| -                                | 308                                       |                                           |       |                                           |                                  | 812                                       | 812                                       | 0   | 810                                       |
| -                                | 343                                       |                                           |       |                                           |                                  | 822                                       | 826                                       | -4  | 822                                       |
| -                                | 398                                       |                                           |       |                                           |                                  | 859                                       | 849                                       | 10  | 857                                       |
| -                                | 439                                       |                                           |       |                                           |                                  | -                                         | 862                                       |     |                                           |
| -                                | 476                                       |                                           |       |                                           |                                  | 874                                       | 868                                       | 6   |                                           |
| -                                | 543                                       |                                           |       |                                           |                                  |                                           |                                           |     |                                           |
| -                                | 565                                       |                                           |       |                                           | <sup>4</sup> K <sub>13/2</sub>   | 26942                                     | 26931                                     | 11  |                                           |
| 611                              | 603                                       | 8                                         | 25614 |                                           |                                  | 962                                       | 955                                       | 7   |                                           |
| 636                              | 621                                       | 15                                        | 632   |                                           |                                  | 27003                                     | 991                                       | 12  |                                           |
| 650                              | 645                                       | 5                                         | 649   |                                           |                                  | 018                                       | 27014                                     | 4   |                                           |
| 672                              | 654                                       | 18                                        | 666   |                                           |                                  | 031                                       | 026                                       | 5   |                                           |
| 684                              | 682                                       | 2                                         | 681   |                                           |                                  | 061                                       | 073                                       | -12 |                                           |
| -                                | 698                                       |                                           |       |                                           |                                  | 120                                       | 109                                       | 11  |                                           |
| 711                              | 708                                       | 3                                         |       |                                           |                                  |                                           |                                           |     |                                           |
| 718                              | 713                                       | 5                                         |       |                                           | <sup>4</sup> F <sub>9/2</sub>    | 27417                                     | 27381                                     | 36  | 27419                                     |
| 771                              | 762                                       | 9                                         | 767   |                                           |                                  | 432                                       | 443                                       | -11 | 434                                       |
| 789                              | 782                                       | 7                                         | 787   |                                           |                                  | 448                                       | 467                                       | -19 | 448                                       |
| 801                              | 795                                       | 6                                         | 798   |                                           |                                  | 508                                       | 510                                       | -2  |                                           |
| 826                              | 823                                       | 3                                         |       |                                           |                                  | -                                         | 552                                       |     |                                           |
| 832                              | 845                                       | -13                                       |       |                                           |                                  |                                           |                                           |     |                                           |
| 866                              | 866                                       | 0                                         |       |                                           | <sup>4</sup> D <sub>3/2</sub>    | 27648                                     | 27646                                     | 2   | 27649                                     |
| 904                              | 882                                       | 22                                        |       |                                           |                                  | 658                                       | 654                                       | 4   | 659                                       |
| -                                | 921                                       |                                           |       |                                           |                                  |                                           |                                           |     |                                           |
| <sup>4</sup> D <sub>1/2</sub>    | 26495                                     | 26472                                     | 23    | 26495                                     |                                  |                                           |                                           |     |                                           |

| SLJ <sup>a</sup><br>State                           | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C | Dieke <sup>e</sup><br>(cm <sup>-1</sup> ) | SLJ <sup>a</sup><br>State                         | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C | Dieke <sup>e</sup><br>(cm <sup>-1</sup> ) |
|-----------------------------------------------------|-------------------------------------------|-------------------------------------------|-----|-------------------------------------------|---------------------------------------------------|-------------------------------------------|-------------------------------------------|-----|-------------------------------------------|
| <sup>4</sup> P <sub>5/2</sub>                       | 27691                                     | 27714                                     | -23 | 27692                                     | ( <sup>4</sup> K, <sup>4</sup> L) <sub>17/2</sub> | 29166                                     | 29169                                     | -3  |                                           |
|                                                     | 734                                       | 763                                       | -29 | 735                                       |                                                   | -                                         | 183                                       |     |                                           |
|                                                     | 758                                       | 787                                       | -29 | 759                                       |                                                   | 195                                       | 191                                       | 4   |                                           |
|                                                     |                                           |                                           |     |                                           |                                                   | -                                         | 219                                       |     |                                           |
| <sup>4</sup> H <sub>7/2</sub>                       | 28247                                     | 28242                                     | 5   | 28247                                     |                                                   | -                                         | 238                                       |     |                                           |
|                                                     | 261                                       | 252                                       | 9   | 262                                       | <sup>4</sup> L <sub>19/2</sub> ,                  | 29268                                     | 29270                                     | -2  |                                           |
|                                                     | 344                                       | 359                                       | -15 |                                           | <sup>4</sup> H <sub>11/2</sub> ,                  | 304                                       | 298                                       | 6   |                                           |
|                                                     | 409                                       | 393                                       | 16  | 410                                       | <sup>4</sup> H <sub>13/2</sub>                    | -                                         | 315                                       |     |                                           |
|                                                     |                                           |                                           |     |                                           |                                                   | -                                         | 325                                       |     |                                           |
| <sup>4</sup> K <sub>15/2</sub>                      | 28722                                     | 28735                                     | -13 |                                           |                                                   | -                                         | 335                                       |     |                                           |
|                                                     | 732                                       | 743                                       | -11 | 28732                                     |                                                   | -                                         | 347                                       |     |                                           |
|                                                     | 760                                       | 757                                       | 3   |                                           |                                                   | -                                         | 356                                       |     |                                           |
|                                                     | -                                         | 770                                       |     |                                           |                                                   | -                                         | 363                                       |     |                                           |
|                                                     | 784                                       | 783                                       | 1   |                                           |                                                   | -                                         | 397                                       |     |                                           |
|                                                     | 797                                       | 793                                       | 4   |                                           |                                                   | -                                         | 416                                       |     |                                           |
|                                                     | -                                         | 804                                       |     |                                           |                                                   | -                                         | 457                                       |     |                                           |
|                                                     | 817                                       | 823                                       | -6  |                                           |                                                   | -                                         | 478                                       |     |                                           |
|                                                     |                                           |                                           |     |                                           |                                                   | -                                         | 505                                       |     |                                           |
| <sup>4</sup> H <sub>9/2</sub>                       | 28938                                     | 28925                                     | 13  | 28938                                     |                                                   | -                                         | 514                                       |     |                                           |
|                                                     | -                                         | 929                                       |     |                                           |                                                   | -                                         | 555                                       |     |                                           |
|                                                     | 981                                       | 989                                       | -8  | 980                                       |                                                   | -                                         | 558                                       |     |                                           |
|                                                     | 29035                                     | 29045                                     | -10 | 036                                       |                                                   | -                                         | 562                                       |     |                                           |
|                                                     | 055                                       | 070                                       | -15 | 052                                       |                                                   | -                                         | 607                                       |     |                                           |
|                                                     |                                           |                                           |     |                                           |                                                   | -                                         | 615                                       |     |                                           |
| <sup>4</sup> D <sub>7/2</sub>                       | 29086                                     | 29098                                     | -12 | 29083                                     |                                                   | -                                         | 650                                       |     |                                           |
|                                                     | 094                                       | 108                                       | -14 | 092                                       |                                                   | 709                                       | 681                                       | 28  |                                           |
|                                                     | 112                                       | 115                                       | -3  | 111                                       |                                                   | 723                                       | 693                                       | 30  |                                           |
|                                                     | -                                         | 122                                       |     |                                           |                                                   | 738                                       | 738                                       | 0   |                                           |
| ( <sup>4</sup> K, <sup>4</sup> L) <sub>17/2</sub> - | 137                                       |                                           |     |                                           |                                                   |                                           |                                           |     |                                           |
|                                                     | -                                         | 140                                       |     |                                           | <sup>4</sup> G <sub>7/2</sub> ,                   | 30027                                     | 30031                                     | -4  | 30028                                     |
|                                                     | 29154                                     | 154                                       | 0   | 29154                                     | <sup>4</sup> G <sub>9/2</sub>                     | 120                                       | 118                                       | 2   | 120                                       |
|                                                     | -                                         | 156                                       |     |                                           |                                                   | 136                                       | 159                                       | -23 | 136                                       |

| SLJ <sup>a</sup><br>State        | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C | Dieke <sup>e</sup><br>(cm <sup>-1</sup> ) | SLJ <sup>a</sup><br>State        | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C | Dieke <sup>e</sup><br>(cm <sup>-1</sup> ) |
|----------------------------------|-------------------------------------------|-------------------------------------------|-----|-------------------------------------------|----------------------------------|-------------------------------------------|-------------------------------------------|-----|-------------------------------------------|
| <sup>4</sup> G <sub>7/2</sub> ,  | -                                         | 30193                                     |     |                                           | <sup>4</sup> P <sub>5/2</sub>    | 32800                                     | 32797                                     | 3   | 32799                                     |
| <sup>4</sup> G <sub>9/2</sub>    | 30216                                     | 210                                       | 6   | 213                                       |                                  | 823                                       | 824                                       | -1  | 823                                       |
|                                  | 235                                       | 212                                       | 23  |                                           |                                  | 857                                       | 856                                       | 1   | 858                                       |
|                                  | -                                         | 260                                       |     |                                           |                                  |                                           |                                           |     |                                           |
|                                  | 293                                       | 289                                       | 4   |                                           | <sup>2</sup> F <sub>5/2</sub> ,  | -                                         | 33548                                     |     |                                           |
|                                  | 332                                       | 347                                       | -15 |                                           | <sup>2</sup> K <sub>13/2</sub> , | 33615                                     | 642                                       | -27 |                                           |
|                                  |                                           |                                           |     |                                           | <sup>4</sup> F <sub>9/2</sub>    | -                                         | 708                                       |     |                                           |
| <sup>4</sup> G <sub>5/2</sub>    | -                                         | 30438                                     |     |                                           |                                  | 777                                       | 787                                       | -10 |                                           |
|                                  | -                                         | 508                                       |     |                                           |                                  | -                                         | 813                                       |     |                                           |
|                                  | -                                         | 549                                       |     |                                           |                                  | -                                         | 865                                       |     |                                           |
|                                  |                                           |                                           |     |                                           |                                  | -                                         | 900                                       |     |                                           |
| <sup>4</sup> P <sub>1/2</sub>    | -                                         | 31226                                     |     |                                           |                                  | -                                         | 955                                       |     |                                           |
|                                  |                                           |                                           |     |                                           |                                  | -                                         | 962                                       |     |                                           |
| <sup>2</sup> L <sub>15/2</sub> , | -                                         | 31337                                     |     |                                           |                                  | -                                         | 977                                       |     |                                           |
| <sup>4</sup> G <sub>11/2</sub> , | -                                         | 352                                       |     |                                           |                                  | -                                         | 34007                                     |     |                                           |
| <sup>4</sup> P <sub>3/2</sub>    | 31410                                     | 394                                       | 16  | 31412                                     |                                  | -                                         | 028                                       |     |                                           |
|                                  | 433                                       | 445                                       | -12 | 435                                       |                                  | -                                         | 049                                       |     |                                           |
|                                  | 463                                       | 476                                       | -13 | 465                                       |                                  | -                                         | 081                                       |     |                                           |
|                                  | 488                                       | 495                                       | -7  | 489                                       |                                  | -                                         | 095                                       |     |                                           |
|                                  | 511                                       | 504                                       | 7   | 511                                       |                                  |                                           |                                           |     |                                           |
|                                  | 523                                       | 513                                       | 10  | 524                                       | <sup>2</sup> L <sub>17/2</sub> , | -                                         | 34341                                     |     |                                           |
|                                  | 532                                       | 530                                       | 2   | 533                                       | <sup>4</sup> I <sub>9/2</sub>    | -                                         | 358                                       |     |                                           |
|                                  | 543                                       | 558                                       | -15 | 538                                       |                                  | -                                         | 386                                       |     |                                           |
|                                  | 583                                       | 604                                       | -21 | 582                                       |                                  | -                                         | 426                                       |     |                                           |
|                                  | 624                                       | 623                                       | 1   | 627                                       |                                  | -                                         | 434                                       |     |                                           |
|                                  | -                                         | 630                                       |     |                                           |                                  | 34454                                     | 467                                       | -13 |                                           |
|                                  | -                                         | 682                                       |     |                                           |                                  | 468                                       | 468                                       | 0   |                                           |
|                                  | -                                         | 707                                       |     |                                           |                                  | 481                                       | 488                                       | -7  | 34484                                     |
|                                  | 759                                       | 734                                       | 25  |                                           |                                  | 497                                       | 495                                       | 2   | 499                                       |
|                                  |                                           |                                           |     |                                           |                                  | 519                                       | 536                                       | -17 |                                           |
|                                  |                                           |                                           |     |                                           |                                  | -                                         | 552                                       |     |                                           |
|                                  |                                           |                                           |     |                                           |                                  | -                                         | 590                                       |     |                                           |

| <u>SLJ<sup>a</sup></u> | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |                   | <u>SLJ<sup>a</sup></u> | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |                   |
|------------------------|--------------------------|--------------------------|-------------------|------------------------|--------------------------|--------------------------|-------------------|
| <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>O-C</u>        | <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>O-C</u>        |
| $^2L_{17/2}$           | -                        | 34612                    |                   |                        |                          |                          | $(38906-41774)^f$ |
| $^4I_{9/2}$            | -                        | 654                      |                   |                        |                          |                          | 46 levels         |
| $^4F_{7/2}$            |                          |                          | $(35612-35823)^f$ | $^2G_{9/2}$            | -                        | 42039                    |                   |
| $^2N_{19/2}$           |                          |                          |                   |                        | 42066                    | 072                      | -6                |
| $^2P_{1/2}$            | -                        | 35846                    |                   |                        | 124                      | 104                      | 20                |
|                        |                          |                          |                   |                        | 135                      | 137                      | -2                |
|                        |                          |                          |                   |                        | 176                      | 183                      | -7                |
| $^4I_{11/2}$           | 35890                    | 35892                    | -2                |                        |                          |                          |                   |
|                        | 905                      | 905                      | 0                 | $^2O_{23/2}$           | 42227                    | 42215                    | 12                |
|                        | -                        | 932                      |                   | $^4G_{5/2}$            | 378                      | 400                      | -22               |
|                        | 954                      | 945                      | 9                 | $^4G_{7/2}$            | -                        | 456                      |                   |
|                        | 996                      | 987                      | 9                 |                        | 462                      | 472                      | -10               |
|                        | 36007                    | 999                      | 8                 |                        | 486                      | 480                      | 6                 |
|                        | 055                      | 36054                    | 1                 |                        | -                        | 506                      |                   |
|                        |                          |                          |                   |                        | -                        | 514                      |                   |
|                        |                          |                          | $(36315-37273)^f$ |                        | -                        | 546                      |                   |
|                        |                          |                          | (39 levels)       |                        | -                        | 574                      |                   |
|                        |                          |                          |                   |                        | -                        | 594                      |                   |
| $^4H_{9/2}$            | 37623                    | 37607                    | 16                |                        |                          |                          |                   |
|                        | -                        | 618                      |                   |                        | -                        | 612                      |                   |
|                        | 634                      | 638                      | -4                |                        | 616                      | 614                      | 2                 |
|                        | 657                      | 654                      | 3                 |                        | -                        | 642                      |                   |
|                        | 679                      | 667                      | 12                |                        | -                        | 643                      |                   |
|                        |                          |                          |                   |                        | 658                      | 661                      | -3                |
|                        |                          |                          |                   |                        | -                        | 668                      |                   |
| $^2F_{7/2}$            | -                        | 38175                    |                   |                        | -                        | 699                      |                   |
| $^2P_{3/2}$            | -                        | 219                      |                   |                        | 711                      | 720                      | -9                |
|                        | -                        | 300                      |                   |                        | -                        | 744                      |                   |
|                        | 38467                    | 461                      | 6                 | $^2O_{21/2}$           | -                        | 809                      |                   |
|                        | 492                      | 485                      | 7                 | $^4K_{15/2}$           | -                        | 914                      |                   |
|                        | -                        | 512                      |                   |                        | -                        | 951                      |                   |
|                        |                          |                          |                   |                        | 959                      | 963                      | -4                |

| <u>SLJ<sup>a</sup></u>   | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            | <u>SLJ<sup>a</sup></u>   | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            |
|--------------------------|--------------------------|--------------------------|------------|--------------------------|--------------------------|--------------------------|------------|
| <u>State</u>             | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>0-C</u> | <u>State</u>             | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>0-C</u> |
| $^2_0$ <sub>21/2</sub> , | -                        | 42976                    |            |                          |                          |                          |            |
| $^4_4$ <sub>K15/2</sub>  | 42990                    | 996                      | -6         |                          |                          |                          |            |
|                          | -                        | 43022                    |            |                          |                          |                          |            |
|                          | 43040                    | 041                      | -1         | $^2_4$ <sub>H11/2</sub>  | 47336                    | 47306                    | 30         |
|                          | -                        | 056                      |            |                          | 374                      | 363                      | 11         |
|                          | 074                      | 080                      | -6         |                          | -                        | 430                      |            |
|                          |                          |                          |            |                          | -                        | 523                      |            |
|                          |                          |                          |            |                          | -                        | 536                      |            |
|                          |                          |                          |            |                          | -                        | 675                      |            |
|                          |                          |                          |            |                          |                          |                          |            |
| $^2_4$ <sub>H11/2</sub>  | 43769                    | 43760                    | 9          |                          |                          |                          |            |
|                          | -                        | 762                      |            |                          |                          |                          |            |
|                          | -                        | 808                      |            |                          |                          |                          |            |
|                          | 844                      | 855                      | -11        | $^4_4$ <sub>P1/2</sub> , |                          |                          |            |
|                          | -                        | 869                      |            | $^2_4$ <sub>H9/2</sub> , |                          |                          |            |
|                          | -                        | 921                      |            | $^2_4$ <sub>F5/2</sub>   |                          |                          |            |
|                          |                          |                          |            |                          |                          |                          |            |
| $^2_4$ <sub>G7/2</sub>   | 43991                    | 43975                    | 16         |                          |                          |                          |            |
|                          | -                        | 44005                    |            |                          |                          |                          |            |
|                          | -                        | 033                      |            |                          |                          |                          |            |
|                          | -                        | 041                      |            |                          |                          |                          |            |

(44491-47029)<sup>f</sup>

54 levels

(47812-48909)<sup>f</sup>

45 levels

(49581-49865)<sup>f</sup>

## Appendix IV. (cont.)

---

<sup>a</sup>Largest or two largest eigenvector components are indicated.

<sup>b</sup>Experimental results for the  $^6H_{5/2}$  state taken from Ref. 1 based on correlation with model calculation. Observed data for the  $^6H_{9/12}$  and  $^6H_{9/2}$  states in the ground multiplet from Ref. 57. Values in parentheses were not included in the parameter fitting process. All entries in  $\text{cm}^{-1}$  vac.

<sup>c</sup>Energy level parameters are given in Table 4.

<sup>d</sup>Ref. 57.

<sup>e</sup>Ref. 1.

<sup>f</sup>In certain regions of the spectrum where no structure was observed and computations indicated a high density of levels, only the initial and final energies of the group are indicated. In some cases one or two very weak bands were observed consistent with calculation, but not included.

## Appendix V.

Experimental and Computed Energy Level Structure for  $\text{Eu}^{3+}:\text{LaF}_3$ 

| SLJ <sup>a</sup><br>State | Model <sup>d</sup>                        |                      | Fit <sup>e</sup>             |                              | SLJ <sup>a</sup><br>State | Model <sup>d</sup>                        |                      | Fit <sup>e</sup>             |                              |
|---------------------------|-------------------------------------------|----------------------|------------------------------|------------------------------|---------------------------|-------------------------------------------|----------------------|------------------------------|------------------------------|
|                           | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Species <sup>c</sup> | Calc.<br>(cm <sup>-1</sup> ) | Calc.<br>(cm <sup>-1</sup> ) |                           | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Species <sup>c</sup> | Calc.<br>(cm <sup>-1</sup> ) | Calc.<br>(cm <sup>-1</sup> ) |
| $^7F_0$                   | 0                                         | $A_1$                | -10                          | -13                          | $^7F_3$                   | -                                         | $B_{(2)}$            | 1834                         | 1839                         |
|                           |                                           |                      |                              |                              |                           | 1843                                      | $B_1$                | 1852                         | 1855                         |
| $^7F_1$                   | 313                                       | $A_2$                | 318                          | 318                          |                           | 1867                                      | $A_1$ (2)            | 1861                         | 1866                         |
|                           | 375                                       | $B_1$ (2)            | 375                          | 372                          |                           | 1884                                      | $A_2$ (1)            | 1888                         | 1893                         |
|                           | 415                                       | $B_2$ (1)            | 414                          | 412                          |                           | 1889                                      | $B_1$ (2)            | 1892                         | 1894                         |
|                           |                                           |                      |                              |                              |                           | 1908                                      | $A_2$                | 1923                         | 1919                         |
| $^7F_2$                   | 964                                       | $A_1$                | 940                          | 943                          |                           | 1996                                      | $B_2$ (1)            | 2007                         | 2010                         |
|                           | -                                         | $B_{(1)}$            | 975                          | 974                          |                           |                                           |                      |                              |                              |
|                           | 997                                       | $A_1$                | 1011                         | 1012                         | $^7F_4$                   | 2614                                      | $B_1$ (2)            | 2582                         | 2593                         |
|                           | -                                         | $A_{(2)}$            | 1109                         | 1110                         |                           | 2788                                      | $A_1$ (2)            | 2769                         | 2768                         |
|                           | 1098                                      | $B_2$                | 1118                         | 1118                         |                           | 2852                                      | $A_2$ (1)            | 2816                         | 2822                         |

## Appendix V. (cont.)

| SLJ <sup>a</sup>            | Obsd. <sup>b</sup>  | Model <sup>d</sup> |                      | Fit <sup>e</sup> |                     | SLJ <sup>a</sup>            | Obsd. <sup>b</sup>  | Model <sup>d</sup> |                      | Fit <sup>e</sup>    |                     |
|-----------------------------|---------------------|--------------------|----------------------|------------------|---------------------|-----------------------------|---------------------|--------------------|----------------------|---------------------|---------------------|
|                             |                     | Calc.              | Species <sup>c</sup> | Calc.            | (cm <sup>-1</sup> ) |                             |                     | Calc.              | Species <sup>c</sup> | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |
| State                       | (cm <sup>-1</sup> ) | State              | (cm <sup>-1</sup> )  | State            | (cm <sup>-1</sup> ) | State                       | (cm <sup>-1</sup> ) | State              | (cm <sup>-1</sup> )  | State               | (cm <sup>-1</sup> ) |
| <sup>7</sup> F <sub>4</sub> | 2873                | B <sub>2</sub> (1) | 2880                 | 2896             |                     |                             |                     | -                  | A <sub>(1)</sub>     | 4050                | 4056                |
|                             | 2926                | B <sub>2</sub>     | 2890                 | 2900             |                     |                             |                     | -                  | B <sub>(1)</sub>     | 4052                | 4061                |
|                             | (2894)              | A <sub>1</sub>     | 2966                 | 2972             |                     |                             |                     | -                  | A <sub>(2)</sub>     | 4098                | 4096                |
|                             | -                   | A <sub>(2)</sub>   | 2988                 | 2987             |                     |                             |                     | -                  | B <sub>(1)</sub>     | 4102                | 4109                |
|                             | 3047                | B <sub>1</sub>     | 3060                 | 3065             |                     |                             |                     |                    |                      |                     |                     |
|                             | 3068                | A <sub>2</sub> (1) | 3077                 | 3075             |                     | <sup>7</sup> F <sub>6</sub> |                     | -                  | A <sub>(1)</sub>     | 4919                | 4934                |
|                             |                     |                    |                      |                  |                     |                             |                     | -                  | A <sub>(2)</sub>     | 4935                | 4950                |
| <sup>7</sup> F <sub>5</sub> | -                   | B <sub>(2)</sub>   | 3775                 | 3787             |                     |                             |                     | -                  | B <sub>(2)</sub>     | 5000                | 5012                |
|                             | -                   | B <sub>(1)</sub>   | 3800                 | 3809             |                     |                             |                     | -                  | B <sub>(1)</sub>     | 5027                | 5039                |
|                             | -                   | A <sub>(1)</sub>   | 3864                 | 3873             |                     |                             |                     | -                  | A <sub>(1)</sub>     | 5035                | 5046                |
|                             | -                   | A <sub>(2)</sub>   | 3921                 | 3931             |                     |                             |                     | -                  | B <sub>(1)</sub>     | 5036                | 5046                |
|                             | -                   | A <sub>(2)</sub>   | 3991                 | 3995             |                     |                             |                     | -                  | A <sub>(1)</sub>     | 5112                | 5124                |
|                             | -                   | B <sub>(2)</sub>   | 3994                 | 4005             |                     |                             |                     | -                  | B <sub>(2)</sub>     | 5120                | 5129                |
|                             | -                   | B <sub>(2)</sub>   | 4035                 | 4036             |                     |                             |                     | -                  | A <sub>(2)</sub>     | 5123                | 5130                |

Appendix V. (cont.)

| SLJ <sup>a</sup>            | State | Model <sup>d</sup>                        |                      |                              |                              | Fit <sup>e</sup>                          |                      |                              |                              | SLJ <sup>a</sup>            | State | Model <sup>d</sup>                        |                      |                              |                              | Fit <sup>e</sup>                          |                      |                              |                              |
|-----------------------------|-------|-------------------------------------------|----------------------|------------------------------|------------------------------|-------------------------------------------|----------------------|------------------------------|------------------------------|-----------------------------|-------|-------------------------------------------|----------------------|------------------------------|------------------------------|-------------------------------------------|----------------------|------------------------------|------------------------------|
|                             |       | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Species <sup>c</sup> | Calc.<br>(cm <sup>-1</sup> ) | Calc.<br>(cm <sup>-1</sup> ) | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Species <sup>c</sup> | Calc.<br>(cm <sup>-1</sup> ) | Calc.<br>(cm <sup>-1</sup> ) |                             |       | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Species <sup>c</sup> | Calc.<br>(cm <sup>-1</sup> ) | Calc.<br>(cm <sup>-1</sup> ) | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Species <sup>c</sup> | Calc.<br>(cm <sup>-1</sup> ) | Calc.<br>(cm <sup>-1</sup> ) |
| <sup>7</sup> F <sub>6</sub> | -     | B <sub>(2)</sub>                          | 5140                 | 5151                         |                              |                                           |                      |                              |                              | <sup>5</sup> D <sub>2</sub> | 21541 | A <sub>1</sub>                            | 21532                | 21532                        |                              |                                           |                      |                              |                              |
|                             | -     | A <sub>(2)</sub>                          | 5159                 | 5168                         |                              |                                           |                      |                              |                              |                             | 565   | A <sub>2</sub> (1)                        | 561                  | 562                          |                              |                                           |                      |                              |                              |
|                             | -     | A <sub>(1)</sub>                          | 5167                 | 5176                         |                              |                                           |                      |                              |                              |                             | -     | B <sub>(2)</sub>                          |                      | 24398                        |                              |                                           |                      |                              |                              |
|                             | -     | B <sub>(1)</sub>                          | 5174                 | 5182                         |                              |                                           |                      |                              |                              |                             | -     | A <sub>(2)</sub>                          |                      | 415                          |                              |                                           |                      |                              |                              |
| <sup>5</sup> D <sub>0</sub> | 17293 | A <sub>1</sub>                            | 17296                | 17294                        |                              |                                           |                      |                              |                              | <sup>5</sup> D <sub>3</sub> | -     | B <sub>(2)</sub>                          |                      | 422                          |                              |                                           |                      |                              |                              |
|                             |       |                                           |                      |                              |                              |                                           |                      |                              |                              |                             | -     | B <sub>(1)</sub>                          |                      | 429                          |                              |                                           |                      |                              |                              |
|                             | 19043 | A <sub>2</sub>                            | 19037                | 19034                        |                              |                                           |                      |                              |                              |                             | -     | B <sub>(1)</sub>                          |                      | 439                          |                              |                                           |                      |                              |                              |
| <sup>5</sup> D <sub>1</sub> | 056   | B <sub>2</sub>                            | 055                  | 052                          |                              |                                           |                      |                              |                              | <sup>5</sup> D <sub>2</sub> | -     | A <sub>(1)</sub>                          |                      | 445                          |                              |                                           |                      |                              |                              |
|                             | 063   | B <sub>1</sub>                            | 066                  | 064                          |                              |                                           |                      |                              |                              |                             | -     | A <sub>(2)</sub>                          |                      | 449                          |                              |                                           |                      |                              |                              |
|                             |       |                                           |                      |                              |                              |                                           |                      |                              |                              |                             | -     | A <sub>(2)</sub>                          |                      | 25067                        |                              |                                           |                      |                              |                              |
| <sup>5</sup> D <sub>2</sub> | 21507 | B <sub>1</sub> (2)                        | 21512                | 21512                        |                              |                                           |                      |                              |                              | <sup>5</sup> L <sub>6</sub> | -     | A <sub>(1)</sub>                          |                      | 095                          |                              |                                           |                      |                              |                              |
|                             | 512   | A <sub>1</sub> (2)                        | 525                  | 525                          |                              |                                           |                      |                              |                              |                             | -     | B <sub>(1)</sub>                          |                      | 098                          |                              |                                           |                      |                              |                              |
|                             | 532   | B <sub>2</sub> (1)                        | 538                  | 539                          |                              |                                           |                      |                              |                              |                             | -     | A <sub>(2)</sub>                          |                      |                              |                              |                                           |                      |                              |                              |

Appendix V. (cont.)

| SLJ <sup>a</sup><br>State   | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Species <sup>c</sup> | Model <sup>d</sup> | Fit <sup>e</sup> | SLJ <sup>a</sup><br>State   | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Species <sup>c</sup> | Model <sup>d</sup> | Fit <sup>e</sup> |
|-----------------------------|-------------------------------------------|----------------------|--------------------|------------------|-----------------------------|-------------------------------------------|----------------------|--------------------|------------------|
|                             |                                           |                      | Calc.              | Calc.            |                             |                                           |                      | Calc.              | Calc.            |
| <sup>5</sup> L <sub>6</sub> | -                                         | B <sub>(2)</sub>     |                    | 25144            | <sup>5</sup> L <sub>6</sub> | -                                         | A <sub>(1)</sub>     |                    | 25375            |
|                             | -                                         | A <sub>(1)</sub>     |                    | 188              |                             | -                                         | B <sub>(2)</sub>     |                    | 390              |
|                             | -                                         | B <sub>(1)</sub>     |                    | 238              |                             | -                                         | B <sub>(1)</sub>     |                    | 394              |
|                             | -                                         | A <sub>(2)</sub>     |                    | 245              |                             | -                                         | A <sub>(2)</sub>     |                    | 408              |
|                             | -                                         | B <sub>(2)</sub>     |                    | 256              |                             | -                                         | A <sub>(1)</sub>     |                    | 464              |

Gaps in the Energy Level Structure at 25464-35000 cm<sup>-1</sup> f

| Energy Range<br>(cm <sup>-1</sup> ) | Energy Gap<br>(cm <sup>-1</sup> ) |
|-------------------------------------|-----------------------------------|
| 25465 - 26158                       | 693                               |
| 28826 - 30910                       | 2084                              |
| 31838 - 33136 <sup>g</sup>          | 1298                              |

Appendix V. (cont.)

<sup>a</sup>The leading eigenvector component is shown.

<sup>b</sup>Values in  $\text{cm}^{-1}$  vacuo from Ref. 7. The level at  $2894 \text{ cm}^{-1}$  was not included in the parameter fitting process, and a reported level at  $2847 \text{ cm}^{-1}$  was excluded.

<sup>c</sup>Symmetry species from Ref. 7. In cases where the sub species  $A_1$ ,  $A_2$ ,  $B_1$  or  $B_2$  was not identified by experiment, or the calculated symmetry was different than that assigned in Ref. 7, the subscript is shown in parenthesis.

<sup>d</sup>Computed level structure based on approximate free-ion parameters estimated for  $\text{Eu}^{3+}$  from apparent systematic trends together with the crystal-field parameters of  $\text{Sm}^{3+}:\text{LaF}_3$ .

<sup>e</sup>The energy level parameters used to compute these levels are given in Table 4.

<sup>f</sup>In most of the energy range from  $25465$ - $50000 \text{ cm}^{-1}$  the density of computed crystal-field components is high. Since the fit parameters are approximate, and no experimental results are available for this region, we have indicated the few gaps of at least  $650 \text{ cm}^{-1}$  where no levels are computed to occur in the  $25465$ - $35000 \text{ cm}^{-1}$ .

<sup>g</sup>A single  $J=0$  level ( $^3P_0$ ) is computed to occur in this range at  $32958 \text{ cm}^{-1}$ .

Appendix VI.  
Experimental and Computed Energy Level Structure for  $\text{Er}^{3+}:\text{LaF}_3$

| SLJ <sup>a</sup><br>State | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C | SLJ <sup>a</sup><br>State | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C   |
|---------------------------|-------------------------------------------|-------------------------------------------|-----|---------------------------|-------------------------------------------|-------------------------------------------|-------|
| $^4\text{I}_{15/2}$       | 0                                         | -22                                       | 22  | $^4\text{F}_{9/2}$        | 15391                                     | 15406                                     | -15   |
|                           | 51.2                                      | 27                                        | 24  |                           | 432                                       | 443                                       | -11   |
|                           | 121.2                                     | 92                                        | 30  |                           | 443                                       | 462                                       | -19   |
|                           | 199.7                                     | 176                                       | 24  |                           | 474                                       | 488                                       | -14   |
|                           | 219.4                                     | 193                                       | 26  |                           | 527                                       | 538                                       | -11   |
|                           | 313.8                                     | 289                                       | 25  |                           | 588                                       | 610                                       | -22   |
|                           | 400.3                                     | 375                                       | 25  |                           | 18557                                     | 18577                                     | -20   |
|                           | 442.9                                     | 420                                       | 23  |                           |                                           |                                           |       |
| $^4\text{I}_{13/2}$       | 6604                                      | 6612                                      | -8  | $^2\text{H}_{11/2}$       | 19266                                     | 19299                                     | -33   |
|                           | 630                                       | 637                                       | -7  |                           | 307                                       | 324                                       | -17   |
|                           | 670                                       | 686                                       | -16 |                           | 314                                       | 344                                       | -30   |
|                           | 700                                       | 699                                       | 1   |                           | 363                                       | 371                                       | -8    |
|                           | 723                                       | 732                                       | -9  |                           | 367                                       | 379                                       | -12   |
|                           | 754                                       | 771                                       | -17 |                           | 419                                       | 430                                       | -11   |
|                           | 823                                       | 830                                       | -7  |                           |                                           |                                           |       |
|                           |                                           |                                           |     |                           | $^4\text{F}_{7/2}$                        | 20656                                     | 20654 |
| $^4\text{I}_{11/2}$       | 10301                                     | 10300                                     | 1   |                           | 703                                       | 697                                       | 6     |
|                           | 311                                       | 314                                       | -3  |                           | 734                                       | 735                                       | -1    |
|                           | 330                                       | 336                                       | -6  |                           | 786                                       | 790                                       | -4    |
|                           | 344                                       | 351                                       | -7  |                           |                                           |                                           |       |
|                           | 358                                       | 364                                       | -6  | $^4\text{F}_{5/2}$        | 22370                                     | 22380                                     | -10   |
|                           | 395                                       | 405                                       | -10 |                           | 374                                       | 389                                       | -15   |
|                           |                                           |                                           |     |                           | 407                                       | 414                                       | -7    |
|                           |                                           |                                           |     |                           |                                           |                                           |       |
| $^4\text{I}_{9/2}$        | 12419                                     | 12392                                     | 27  | $^4\text{F}_{3/2}$        | 22684                                     | 22692                                     | -8    |
|                           | 518                                       | 512                                       | 6   |                           | 751                                       | 748                                       | 3     |
|                           | 615                                       | 596                                       | 19  |                           |                                           |                                           |       |
|                           | 701                                       | 681                                       | 20  |                           |                                           |                                           |       |
|                           | 730                                       | 720                                       | 10  |                           |                                           |                                           |       |

## Appendix VI. (cont.)

| <u>SLJ<sup>a</sup></u>         | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            | <u>SLJ<sup>a</sup></u>         | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            |
|--------------------------------|--------------------------|--------------------------|------------|--------------------------------|--------------------------|--------------------------|------------|
| <u>State</u>                   | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>0-C</u> | <u>State</u>                   | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>0-C</u> |
| <sup>2</sup> G <sub>9/2</sub>  | 24602                    | 24587                    | 15         | <sup>2</sup> G <sub>7/2</sub>  | 28239                    | 28233                    | 16         |
|                                | 680                      | 698                      | -18        |                                | 255                      | 237                      | 18         |
|                                | 754                      | 755                      | -1         |                                | -                        | 246                      |            |
|                                | 840                      | 831                      | 9          |                                | 264                      | 250                      | 14         |
|                                | 862                      | 864                      | -2         | <sup>2</sup> P <sub>3/2</sub>  | 31695                    | 31723                    | -28        |
| <sup>4</sup> G <sub>11/2</sub> | 26526                    | 26534                    | -8         |                                | 752                      | 786                      | -34        |
|                                | 554                      | 559                      | -5         | <sup>2</sup> K <sub>13/2</sub> | 33107                    | 33086                    | 21         |
|                                | 582                      | 586                      | -4         |                                | 116                      | 106                      | 10         |
| (621) <sup>d</sup>             | 637                      |                          |            |                                | 141                      | 154                      | -13        |
|                                | 647                      | 640                      | 7          |                                | 163                      | 161                      | 2          |
|                                | 707                      | 700                      | 7          |                                | 186                      | 196                      | -10        |
| <sup>4</sup> G <sub>9/2</sub>  | 27602                    | 27608                    | -6         |                                | -                        | 228                      |            |
|                                | 616                      | 615                      | 1          | <sup>2</sup> P <sub>1/2</sub>  | 33346                    | 33350                    | -4         |
|                                | 628                      | 625                      | 3          | <sup>2</sup> K <sub>13/2</sub> | 397                      | 405                      | -8         |
|                                | 641                      | 637                      | 4          |                                |                          |                          |            |
|                                | 668                      | 660                      | 8          |                                |                          |                          |            |
| <sup>2</sup> K <sub>15/2</sub> | 27817                    | 27826                    | -9         | <sup>4</sup> G <sub>5/2</sub>  | -                        | 33510                    |            |
|                                | 827                      | 838                      | -11        |                                | -                        | 522                      |            |
|                                | 872                      | 877                      | -5         |                                | -                        | 628                      |            |
|                                | 898                      | 893                      | 5          | <sup>4</sup> G <sub>7/2</sub>  | 34159                    | 34154                    | 5          |
|                                | 933                      | 932                      | 1          |                                | 197                      | 182                      | 15         |
| -                              | 978                      |                          |            |                                | 222                      | 215                      | 7          |
| -                              | 28014                    |                          |            |                                | 280                      | 271                      | 9          |
| 28125                          | 132                      | -7                       |            |                                |                          |                          |            |

## Appendix VI. (cont.)

| <u>SLJ<sup>a</sup></u> | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            | <u>SLJ<sup>a</sup></u> | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            |
|------------------------|--------------------------|--------------------------|------------|------------------------|--------------------------|--------------------------|------------|
| <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>0-C</u> | <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>0-C</u> |
| $^2D_{5/2}$            | 35026                    | 35043                    | -17        | $^2L_{17/2}$           | 41802                    | 41832                    | -30        |
|                        | 052                      | 052                      | 0          |                        | -                        | 861                      |            |
|                        | 085                      | 091                      | -6         |                        | -                        | 922                      |            |
| $^2H_{9/2}$            |                          |                          |            |                        | 934                      | 957                      | -23        |
|                        | 36520                    | 36526                    | -6         | $^4D_{3/2}$            | 42002                    | 42045                    | -43        |
|                        | 556                      | 549                      | 7          |                        | -                        | 054                      |            |
|                        | 623                      | 637                      | -14        |                        |                          |                          |            |
|                        | 720                      | 729                      | -9         |                        | 42499                    | 42484                    | 15         |
| $^4D_{5/2}$            | 38807                    | 38815                    | -8         | $^2D_{3/2}$            | 43090                    | 43108                    | -18        |
|                        | 837                      | 858                      | -21        |                        | 127                      | 138                      | -11        |
|                        | 844                      | 863                      | -19        |                        |                          |                          |            |
| $^4F_{7/2}$            |                          |                          |            | $^2I_{13/2}$           | 43686                    | 43672                    | 14         |
|                        | 39454                    | 39460                    | -6         |                        | 742                      | 725                      | 17         |
|                        | 537                      | 540                      | -3         |                        | 759                      | 750                      | 9          |
|                        | 603                      | 605                      | -2         |                        | 770                      | 769                      | 1          |
|                        | 634                      | 630                      | 4          |                        | 833                      | 815                      | 18         |
| $^2I_{11/2}$           |                          |                          |            |                        | 914                      | 898                      | 16         |
|                        | 41237                    | 41211                    | 26         |                        | -                        | 956                      |            |
|                        | 294                      | 269                      | 25         |                        |                          |                          |            |
|                        | 313                      | 304                      | 9          | $^4D_{1/2}$            | -                        | 47347                    |            |
|                        | 380                      | 352                      | 28         |                        |                          |                          |            |
|                        | 395                      | 375                      | 20         | $^2L_{15/2}$           | 47891                    | 47891                    | 0          |
|                        | 493                      | 466                      | 27         |                        | 951                      | 922                      | 29         |
|                        |                          |                          |            |                        | -                        | 990                      |            |
|                        |                          |                          |            |                        |                          |                          |            |
| $^2L_{17/2}$           | 41680                    | 41720                    | -40        | $^4F_{5/2}$            | -                        | 48007                    |            |
|                        | -                        | 801                      |            |                        | 48071                    | 066                      | 5          |
|                        | 783                      | 822                      | -39        |                        |                          | 083                      |            |

## Appendix VI. (cont.)

| <u>SLJ<sup>a</sup></u> | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            |
|------------------------|--------------------------|--------------------------|------------|
| <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>0-C</u> |
| $^2L_{15/2}$           | -                        | 48168                    |            |
|                        | -                        | 199                      |            |
| $^2H_{9/2}$            | -                        | 48306                    |            |
|                        | -                        | 349                      |            |
|                        | -                        | 394                      |            |
|                        | -                        | 438                      |            |
|                        | -                        | 461                      |            |
| $^2D_{5/2}$            | 49223                    | 49178                    | 45         |
|                        | 272                      | 248                      | 24         |
|                        | 357                      | 321                      | 36         |

<sup>a</sup>The principal SLJ-component of the state is indicated.

<sup>b</sup>All energies are corrected to vacuum cm<sup>-1</sup>. The energies of the ground  $^4I_{15/2}$  state are taken from Ref. 58.

<sup>c</sup>Energy level parameters are given in Table 4.

<sup>d</sup>Not included in the energy level parameter fitting.

Appendix VII.

Experimental and Computed Energy Level Structure for  $Tm^{3+}:LaF_3$

| SLJ     | Model <sup>a</sup>  | Expt. <sup>b</sup>  | Calc. <sup>c</sup>  |     | SLJ     | Model <sup>a</sup>  | Expt. <sup>b</sup>  | Calc. <sup>c</sup>  |     |
|---------|---------------------|---------------------|---------------------|-----|---------|---------------------|---------------------|---------------------|-----|
| State   | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | O-C | State   | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | O-C |
| $^3H_6$ | 0                   | 0                   | -4                  | 4   | $^3F_4$ | 5585                | 5615                | 5613                | 2   |
|         | 67                  | 67                  | 66                  | 1   |         | 5689                | 5706                | 5703                | 3   |
|         | 74                  | -                   | 76                  |     |         | 5790                | 5814                | 5820                | -6  |
|         | 156                 | 118                 | 131                 | -13 |         | 5813                | 5826                | 5838                | -12 |
|         | 204                 | -                   | 197                 |     |         | 5836                | 5859                | 5857                | 2   |
|         | 235                 | -                   | 193                 |     |         | 5851                | 5866                | 5863                | 3   |
|         | 272                 | -                   | 254                 |     |         | 5903                | -                   | 5905                |     |
|         | 274                 | -                   | 273                 |     |         | 5916                | 5918                | 5924                | -6  |
|         | 349                 | --                  | 339                 |     |         | 5929                | 5958                | 5941                | 17  |
|         | 354                 | -                   | 346                 |     |         |                     |                     |                     |     |
|         | 400                 | -                   | 386                 |     | $^3H_5$ | 8306                | 8305                | 8293                | 12  |
|         | 418                 | -                   | 399                 |     |         | 8354                | 8332                | 8331                | 1   |
|         | 441                 | -                   | 420                 |     |         |                     |                     |                     |     |

Appendix VII. (cont.)

| SLJ                         | Model <sup>a</sup>  | Expt. <sup>b</sup>  | Calc. <sup>c</sup>  | O-C | SLJ                         | Model <sup>a</sup>          | Expt. <sup>b</sup>  | Calc. <sup>c</sup>  | O-C   |
|-----------------------------|---------------------|---------------------|---------------------|-----|-----------------------------|-----------------------------|---------------------|---------------------|-------|
| State                       | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |     | State                       | (cm <sup>-1</sup> )         | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |       |
| <sup>3</sup> H <sub>5</sub> | 8365                | 8338                | 8337                | 1   | <sup>3</sup> H <sub>4</sub> | 12784                       | -                   | 12770               |       |
|                             | 8395                | 8366                | 8368                | -2  |                             | 826                         | 12825               | 819                 | 6     |
|                             | 8451                | 8400                | 8415                | -15 |                             | 832                         | -                   | 824                 |       |
|                             | 8460                | -                   | 8442                |     |                             | 880                         | 868                 | 863                 | 5     |
|                             | 8470                | -                   | 8446                |     |                             | 909                         | -                   | 890                 |       |
|                             | 8481                | -                   | 8464                |     |                             | <sup>3</sup> F <sub>3</sub> | 14514               | 14508               | 14522 |
|                             | 8522                | -                   | 8499                |     |                             |                             | -                   | -                   | -14   |
|                             | 8581                | 8550                | 8562                | -12 |                             |                             | 530                 | -                   | 537   |
|                             | 8589                | -                   | 8568                |     |                             |                             | 534                 | 539                 | 538   |
| <sup>3</sup> H <sub>4</sub> | 12547               | 12561               | 12553               | 8   |                             | 550                         | 554                 | 556                 | -2    |
|                             | 597                 | 570                 | 578                 | -8  |                             | 582                         | 588                 | 588                 | 0     |
|                             | 678                 | 700                 | 690                 | 10  |                             | 590                         | 596                 | 593                 | 3     |
|                             | 734                 | 727                 | 719                 | 8   |                             | 622                         | -                   | 627                 |       |

## Appendix VII. (cont.)

| SLJ     | Model <sup>a</sup><br>(cm <sup>-1</sup> ) | Expt. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | SLJ     | Model <sup>a</sup><br>(cm <sup>-1</sup> ) | Expt. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) |       |
|---------|-------------------------------------------|-------------------------------------------|-------------------------------------------|---------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------|
| State   |                                           |                                           | 0-C                                       | State   |                                           |                                           | 0-C                                       |       |
| $^3F_2$ | 15153                                     | 15138                                     | 15144                                     | -6      | $^1G_4$                                   | 21511                                     | 21519                                     | 21512 |
|         | 180                                       | 169                                       | 171                                       | -2      |                                           |                                           |                                           | 7     |
| 200     | 207                                       | 193                                       | 14                                        | $^1D_2$ | 28022                                     | 28021                                     | 28024                                     | -3    |
| 254     | 240                                       | 240                                       | 0                                         |         | 023                                       | 034                                       | 024                                       | 10    |
| 266     | -                                         | -                                         | 264                                       |         | 041                                       | 057                                       | 049                                       | 8     |
|         |                                           |                                           |                                           |         | 074                                       | 088                                       | 088                                       | 0     |
| $^1G_4$ | 21016                                     | 21037                                     | 21041                                     | -4      |                                           | 100                                       | 106                                       | 114   |
|         | 193                                       | 196                                       | 198                                       | -2      |                                           |                                           |                                           | -3    |
| 300     | 309                                       | 319                                       | -10                                       | $^1I_6$ | 34781                                     | 34769                                     | 34772                                     | -3    |
| 335     | 349                                       | 339                                       | 10                                        |         | 808                                       | -                                         | /95                                       |       |
| 362     | 366                                       | 372                                       | -6                                        |         | 906                                       | 896                                       | 906                                       | -10   |
| 364     | 380                                       | 382                                       | -2                                        |         | 35000                                     | -                                         | 997                                       |       |
| 425     | -                                         | -                                         | 406                                       |         | 022                                       | -                                         | 35015                                     |       |
| 508     | -                                         | -                                         | 511                                       |         | 078                                       | -                                         | 106                                       |       |

Appendix VII. (cont.)

| SLJ                         | Model <sup>a</sup>  | Expt. <sup>b</sup>  | Calc. <sup>c</sup>  | O-C | SLJ                         | Model <sup>a</sup>  | Expt. <sup>b</sup>  | Calc. <sup>c</sup>  | O-C |
|-----------------------------|---------------------|---------------------|---------------------|-----|-----------------------------|---------------------|---------------------|---------------------|-----|
| State                       | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |     | State                       | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |     |
| <sup>1</sup> I <sub>6</sub> | 35079               | 35107               | 35109               | -2  | <sup>3</sup> P <sub>1</sub> | 36549               | 36587               | 36575               | 12  |
|                             | 149                 | 160                 | 143                 | 17  |                             | 588                 | -                   | 624                 |     |
|                             | 201                 | -                   | 184                 |     | <sup>3</sup> P <sub>2</sub> | 38225               | 38250               | 38244               | 6   |
|                             | 216                 | -                   | 226                 |     |                             | 266                 | 291                 | 290                 | 1   |
|                             | 217                 | -                   | 234                 |     |                             | 296                 | 336                 | 326                 | 10  |
|                             | 257                 | -                   | 253                 |     |                             | 415                 | 414                 | 427                 | -13 |
|                             | 272                 | -                   | 270                 |     |                             | 426                 | 451                 | 464                 | -13 |
| <sup>3</sup> P <sub>0</sub> | 35588               | 35604               | 35624               | -20 | <sup>1</sup> S <sub>0</sub> | 75158               | -                   | 75025               |     |
| <sup>3</sup> P <sub>1</sub> | 36502               | 36531               | 36525               | 6   |                             |                     |                     |                     |     |

<sup>a</sup>Ref. 13.

<sup>b</sup>Ref. 61 (cm<sup>-1</sup> vac).

<sup>c</sup>Energy level parameters are given in Table 4.

**Appendix VIII.**  
**Experimental and Computed Energy Level Structure for  $\text{Ho}^{3+}:\text{LaF}_3$**

| <u>SLJ<sup>a</sup></u> | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            | <u>SLJ<sup>a</sup></u> | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            |
|------------------------|--------------------------|--------------------------|------------|------------------------|--------------------------|--------------------------|------------|
| <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>O-C</u> | <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>O-C</u> |
| $^5\text{I}_8$         | 0                        | -2                       | 2          | $^5\text{I}_7$         | 5287                     | 5291                     | -4         |
|                        | 4.5                      | 3                        | 1          |                        | 296                      | 293                      | 3          |
|                        | 42                       | 29                       | 13         |                        | 309                      | 300                      | 9          |
|                        | 50                       | 54                       | -4         |                        | 314                      | 303                      | 11         |
|                        | 69                       | 67                       | 2          | $^5\text{I}_6$         | 8726                     | 8722                     | 4          |
|                        | 122                      | 130                      | -8         |                        | 730                      | 723                      | 7          |
|                        | 145                      | 151                      | -6         |                        | 733                      | 732                      | 1          |
|                        | 201                      | 221                      | -20        |                        | 735                      | 735                      | 0          |
|                        | 215                      | 222                      | -7         |                        | 747                      | 740                      | 7          |
|                        | 227                      | 232                      | -5         |                        | 753                      | 754                      | -1         |
| (261) <sup>d</sup>     | 298                      |                          |            |                        | 761                      | 767                      | -6         |
|                        | 307                      | 307                      | -0         |                        | 773                      | 776                      | -3         |
|                        | 322                      | 324                      | -2         |                        | 783                      | 778                      | 5          |
|                        | 349                      | 339                      | 10         |                        | 786                      | 791                      | -5         |
|                        | 387                      | 388                      | -1         |                        | 814                      | 812                      | 2          |
|                        | 398                      | 391                      | 7          |                        | -                        | 817                      |            |
|                        | 409                      | 410                      | -1         |                        | 834                      | 839                      | -5         |
| $^5\text{I}_7$         | -                        | 5182                     |            | $^5\text{I}_5$         | 11304                    | 11298                    | 6          |
|                        | 5192                     | 182                      | 10         |                        | 306                      | 303                      | 3          |
|                        | -                        | 242                      |            |                        | 308                      | 303                      | 5          |
|                        | -                        | 243                      |            |                        | 311                      | 314                      | -3         |
|                        | -                        | 244                      |            |                        | -                        | 315                      |            |
|                        | 246                      | 248                      | -2         |                        | 321                      | 319                      | 2          |
|                        | 250                      | 250                      | 0          |                        | 332                      | 333                      | -1         |
|                        | -                        | 256                      |            |                        | -                        | 338                      |            |
|                        | 264                      | 268                      | -4         |                        | 363                      | 360                      | 3          |
|                        | 273                      | 276                      | -3         |                        |                          |                          |            |
|                        | 280                      | 276                      | 4          |                        |                          |                          |            |

## Appendix VIII. (cont.)

| <u>SLJ<sup>a</sup></u>      | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> | <u>O-C</u> | <u>SLJ<sup>a</sup></u>      | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> | <u>O-C</u> |
|-----------------------------|--------------------------|--------------------------|------------|-----------------------------|--------------------------|--------------------------|------------|
| <u>State</u>                | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> |            | <u>State</u>                | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> |            |
| <sup>5</sup> I <sub>5</sub> | -                        | 11369                    |            | <sup>5</sup> S <sub>2</sub> | 18603                    | 18602                    | 1          |
|                             | 11386                    | 392                      | -6         |                             | 620                      | 620                      | 0          |
| <sup>5</sup> I <sub>4</sub> | -                        | 13260                    |            | <sup>5</sup> F <sub>4</sub> | 18677                    | 18677                    | 0          |
|                             | 13286                    | 285                      | 1          |                             | 688                      | 683                      | 5          |
|                             | 362                      | 382                      | -20        |                             | 709                      | 719                      | -10        |
|                             | 380                      | 388                      | -8         |                             | 720                      | 728                      | -8         |
|                             | -                        | 394                      |            |                             | 737                      | 749                      | -12        |
|                             | -                        | 419                      |            |                             | 753                      | 760                      | -7         |
|                             | -                        | 455                      |            |                             | -                        | 767                      |            |
|                             | -                        | 477                      |            |                             | 776                      | 793                      | -17        |
|                             | -                        | 607                      |            |                             | 814                      | 812                      | 2          |
| <sup>5</sup> F <sub>5</sub> | 15576                    | 15587                    | -11        | <sup>5</sup> F <sub>3</sub> | 20744                    | 20725                    | 19         |
|                             | 593                      | 603                      | -10        |                             | 754                      | 750                      | 4          |
|                             | 608                      | 615                      | -7         |                             | 796                      | 789                      | 7          |
|                             | 625                      | 629                      | -4         |                             | 799                      | 791                      | 8          |
|                             | 641                      | 637                      | 4          |                             | 826                      | 821                      | 5          |
|                             | 659                      | 661                      | -2         |                             | 832                      | 823                      | 9          |
|                             | -                        | 681                      |            |                             | 866                      | 861                      | 5          |
|                             | -                        | 712                      |            |                             |                          |                          |            |
|                             | -                        | 714                      |            | <sup>5</sup> F <sub>2</sub> | 21238                    | 21228                    | 10         |
|                             | 708                      | 717                      | -9         |                             | 249                      | 232                      | 17         |
|                             | 730                      | 734                      | -4         |                             | 265                      | 260                      | 5          |
|                             |                          |                          |            |                             | 275                      | 281                      | -6         |
| <sup>5</sup> S <sub>2</sub> | 18590                    | 18597                    | -7         |                             | 286                      | 287                      | -1         |
|                             | 600                      | 598                      | 2          |                             |                          |                          |            |
|                             | 603                      | 601                      | 2          | <sup>3</sup> K <sub>8</sub> | 21411                    | 21405                    | 6          |
|                             |                          |                          |            |                             | 419                      | 424                      | -5         |

## Appendix VIII. (cont.)

| <u>SLJ<sup>a</sup></u>      | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> | <u>0-C</u> | <u>SLJ<sup>a</sup></u>      | <u>Obsd.<sup>b</sup></u>    | <u>Calc.<sup>c</sup></u> | <u>0-C</u> |
|-----------------------------|--------------------------|--------------------------|------------|-----------------------------|-----------------------------|--------------------------|------------|
| <u>State</u>                | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> |            | <u>State</u>                | <u>(cm<sup>-1</sup>)</u>    | <u>(cm<sup>-1</sup>)</u> |            |
| <sup>3</sup> K <sub>8</sub> | 21423                    | 21427                    | -4         | <sup>5</sup> F <sub>1</sub> | -                           | 22504                    |            |
|                             | 432                      | 426                      | 6          |                             | 22508                       | 504                      | 4          |
|                             | 440                      | 449                      | -9         |                             | -                           | 535                      |            |
|                             | 451                      | 457                      | -6         |                             |                             |                          |            |
|                             | 461                      | 458                      | 3          |                             | <sup>5</sup> G <sub>5</sub> | 24112                    | 24123      |
|                             | -                        | 468                      |            |                             |                             | 116                      | 130        |
|                             | 481                      | 479                      | 2          |                             |                             | 125                      | 136        |
|                             | 495                      | 480                      | 15         |                             |                             | 146                      | 165        |
|                             | 514                      | 507                      | 7          |                             |                             | -                        | 167        |
|                             | 527                      | 514                      | 13         |                             |                             | 170                      | 173        |
|                             | 532                      | 546                      | -14        |                             |                             | 182                      | 180        |
|                             | 550                      | 552                      | -2         |                             |                             | -                        | 185        |
|                             | 566                      | 564                      | 2          |                             |                             | 196                      | 194        |
|                             | -                        | 573                      |            |                             |                             | -                        | 222        |
|                             | 579                      | 574                      | 5          |                             |                             | 247                      | 222        |
|                             |                          |                          |            |                             |                             |                          | 25         |
| <sup>5</sup> G <sub>6</sub> | 22220                    | 22238                    | -18        | <sup>5</sup> G <sub>4</sub> | 25985                       | 25982                    | 3          |
|                             | 235                      | 250                      | -15        |                             | 26008                       | 980                      | 28         |
|                             | 263                      | 260                      | 3          |                             | 037                         | 26051                    | -14        |
|                             | 283                      | 303                      | -20        |                             | 054                         | 057                      | -3         |
|                             | 328                      | 331                      | -3         |                             | -                           | 058                      |            |
|                             | 346                      | 342                      | 4          |                             | 084                         | 059                      | 25         |
|                             | 361                      | 348                      | 13         |                             | 096                         | 096                      | 0          |
|                             | 374                      | 360                      | 14         |                             | -                           | 155                      |            |
|                             | 389                      | 380                      | 9          |                             | 161                         | 169                      | -8         |
|                             | 407                      | 395                      | 12         |                             |                             |                          |            |
|                             | 424                      | 423                      | 1          | <sup>3</sup> K <sub>7</sub> | 26255                       | 26261                    | -6         |
|                             | 438                      | 429                      | 9          |                             | -                           | 262                      |            |
|                             | 454                      | 479                      | -25        |                             | -                           | 266                      |            |

## Appendix VIII. (cont.)

| <u>SLJ<sup>a</sup></u>                                    | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            | <u>SLJ<sup>a</sup></u>                                    | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            |
|-----------------------------------------------------------|--------------------------|--------------------------|------------|-----------------------------------------------------------|--------------------------|--------------------------|------------|
| <u>State</u>                                              | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>O-C</u> | <u>State</u>                                              | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>O-C</u> |
| <sup>3</sup> K <sub>7</sub>                               | 26266                    | 26267                    | -1         | <sup>5</sup> G <sub>5</sub> , <sup>3</sup> H <sub>6</sub> | 27945                    | 27948                    | -3         |
|                                                           | 277                      | 282                      | -5         |                                                           | -                        | 973                      |            |
|                                                           | -                        | 287                      |            |                                                           | -                        | 984                      |            |
|                                                           | 288                      | 287                      | 1          |                                                           | -                        | 991                      |            |
|                                                           | 293                      | 298                      | -5         |                                                           | 997                      | 28000                    | -3         |
|                                                           | -                        | 299                      |            |                                                           | -                        | 020                      |            |
|                                                           | 298                      | 299                      | -1         |                                                           | -                        | 076                      |            |
|                                                           | 312                      | 312                      | 0          |                                                           | 28092                    | 077                      | 15         |
|                                                           | 320                      | 314                      | 6          |                                                           |                          |                          |            |
|                                                           | -                        | 324                      |            | <sup>5</sup> F <sub>2</sub>                               | 28426                    | 28433                    | -7         |
|                                                           | 328                      | 331                      | -3         |                                                           | -                        | 450                      |            |
|                                                           | 328                      | 332                      | -4         |                                                           | -                        | 479                      |            |
|                                                           |                          |                          |            |                                                           | -                        | 492                      |            |
| <sup>5</sup> G <sub>5</sub> , <sup>3</sup> H <sub>6</sub> | 27749                    | 27746                    | 3          |                                                           | -                        | 506                      |            |
|                                                           | 758                      | 751                      | 7          |                                                           |                          |                          |            |
|                                                           | 804                      | 788                      | 16         | <sup>5</sup> G <sub>3</sub> , <sup>3</sup> L <sub>9</sub> | -                        | 28956                    |            |
|                                                           | -                        | 814                      |            |                                                           | 28981                    | 996                      | -15        |
|                                                           | 815                      | 814                      | 1          |                                                           | 29011                    | 29017                    | -6         |
|                                                           | -                        | 819                      |            |                                                           | 020                      | 019                      | 1          |
|                                                           | -                        | 820                      |            |                                                           | 032                      | 020                      | 12         |
|                                                           | 825                      | 826                      | -1         |                                                           | 035                      | 028                      | 7          |
|                                                           | 839                      | 840                      | -1         |                                                           | 039                      | 036                      | 3          |
|                                                           | -                        | 846                      |            |                                                           | -                        | 049                      |            |
|                                                           | 854                      | 851                      | 3          |                                                           | -                        | 051                      |            |
|                                                           | 869                      | 859                      | 10         |                                                           | 068                      | 052                      | 16         |
|                                                           | 879                      | 882                      | -3         |                                                           | -                        | 094                      |            |
|                                                           | --                       | 926                      |            |                                                           | -                        | 094                      | 4          |
|                                                           | -                        | 927                      |            |                                                           | -                        | 095                      |            |
|                                                           | 932                      | 928                      | 4          |                                                           | 102                      | 100                      | 2          |

## Appendix VIII. (cont.)

| <u>SLJ<sup>a</sup></u> | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> | <u>0-C</u> | <u>SLJ<sup>a</sup></u> | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> | <u>0-C</u> |
|------------------------|--------------------------|--------------------------|------------|------------------------|--------------------------|--------------------------|------------|
| <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> |            | <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> |            |
| $^5G_3, ^3L_9$         | 29122                    | 29125                    | -3         | $^3F_4, ^3K_6$         | -                        | 30267                    |            |
|                        | -                        | 127                      |            |                        | -                        | 288                      |            |
|                        | -                        | 128                      |            |                        | 30292                    | 306                      | -14        |
|                        | -                        | 146                      |            |                        | -                        | 322                      |            |
|                        | 161                      | 160                      | 1          |                        | -                        | 325                      |            |
|                        | -                        | 164                      |            |                        | 330                      | 331                      | -1         |
|                        | -                        | 166                      |            |                        |                          |                          |            |
|                        | 187                      | 174                      | 13         | $^5G_2$                | -                        | 30997                    |            |
|                        | -                        | 220                      |            |                        | 31002                    | 31006                    | -4         |
|                        | 230                      | 220                      | 10         |                        | 020                      | 008                      | 12         |
|                        | -                        | 303                      |            |                        | -                        | 026                      |            |
|                        | 292                      | 303                      | -11        |                        | 062                      | 072                      | -10        |
| $^3F_4, ^3K_6$         | -                        | 30023                    |            | $^3D_3$                | -                        | 33313                    |            |
|                        | -                        | 027                      |            |                        | -                        | 330                      |            |
| $30058$                | 058                      | 0                        |            |                        | -                        | 346                      |            |
|                        | 078                      | 072                      | 6          |                        | -                        | 360                      |            |
|                        | 094                      | 101                      | -7         |                        | -                        | 382                      |            |
|                        | 101                      | 105                      | -4         |                        | -                        | 412                      |            |
|                        | -                        | 114                      |            |                        | -                        | 437                      |            |
|                        | 116                      | 122                      | -6         | $^3P_1$                | -                        | 33554                    |            |
|                        | -                        | 140                      |            |                        | -                        | 560                      |            |
|                        | 157                      | 155                      | 2          |                        | -                        | 564                      |            |
|                        | 186                      | 187                      | -1         |                        | -                        |                          |            |
|                        | -                        | 197                      |            |                        |                          |                          |            |
|                        | 197                      | 198                      | -1         | $^3M_{10}, ^3L_8$      | 34022                    | 34033                    | -11        |
|                        | 213                      | 218                      | -5         |                        | -                        | 040                      |            |
|                        | -                        | 228                      |            |                        | -                        | 048                      |            |
|                        | 234                      | 231                      | 3          |                        | 061                      | 057                      | 4          |

## Appendix VIII. (cont.)

| SLJ <sup>a</sup><br><u>State</u>                           | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | <u>O-C</u> | SLJ <sup>a</sup><br><u>State</u> | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | <u>O-C</u>                 |
|------------------------------------------------------------|-------------------------------------------|-------------------------------------------|------------|----------------------------------|-------------------------------------------|-------------------------------------------|----------------------------|
| <sup>3</sup> M <sub>10</sub> , <sup>3</sup> L <sub>8</sub> | -                                         | 34105                                     |            | <sup>5</sup> D <sub>4</sub>      | 36058                                     | 36040                                     | 18                         |
|                                                            | 34116                                     | 122                                       | -6         |                                  | 070                                       | 071                                       | -1                         |
|                                                            | -                                         | 138                                       |            |                                  | 086                                       | 085                                       | 1                          |
|                                                            | -                                         | 166                                       |            |                                  | 100                                       | 090                                       | 10                         |
|                                                            | -                                         | 191                                       |            |                                  | 111                                       | 140                                       | -29                        |
|                                                            | 205                                       | 205                                       | 0          |                                  | -                                         | 221                                       |                            |
|                                                            | -                                         | 212                                       |            |                                  | -                                         | 251                                       |                            |
|                                                            | -                                         | 221                                       |            |                                  | 244                                       | 252                                       | -8                         |
|                                                            | (34234-34542) <sup>e</sup>                |                                           |            |                                  | -                                         | 270                                       |                            |
| <sup>5</sup> G <sub>4</sub>                                | -                                         | 34967                                     |            | <sup>3</sup> P <sub>0</sub>      | -                                         | 36318                                     |                            |
|                                                            | -                                         | 978                                       |            |                                  |                                           |                                           |                            |
|                                                            | -                                         | 978                                       |            |                                  |                                           |                                           | (36450-36703) <sup>f</sup> |
|                                                            | 34994                                     | 984                                       | 10         | <sup>3</sup> H <sub>5</sub>      | 36852                                     | 36868                                     | -16                        |
|                                                            | -                                         | 998                                       |            |                                  | 869                                       | 875                                       | -6                         |
| 35003                                                      | 35002                                     | 1                                         |            |                                  | 894                                       | 909                                       | -15                        |
| 023                                                        | 024                                       | -1                                        |            |                                  | -                                         | 935                                       |                            |
| -                                                          | 024                                       |                                           |            |                                  | -                                         | 965                                       |                            |
| 049                                                        | 032                                       | 17                                        |            |                                  | 37001                                     | 990                                       | 11                         |
| <sup>3</sup> F <sub>3</sub>                                | 35335                                     | 35327                                     | 8          |                                  | -                                         | 37021                                     |                            |
|                                                            | -                                         | 343                                       |            |                                  | 034                                       | 032                                       | 2                          |
| 369                                                        | 368                                       | 1                                         |            |                                  | -                                         | 032                                       |                            |
| 424                                                        | 415                                       | 9                                         |            |                                  | -                                         | 045                                       |                            |
| -                                                          | 435                                       |                                           |            |                                  | -                                         | 066                                       |                            |
| 489                                                        | 491                                       | -2                                        |            |                                  |                                           |                                           |                            |
| -                                                          | 530                                       |                                           |            |                                  | (37975-38237) <sup>g</sup>                |                                           |                            |

## Appendix VIII. (cont.)

| SLJ <sup>a</sup><br><u>State</u> | Obsd. <sup>b</sup><br><u>(cm<sup>-1</sup>)</u> | Calc. <sup>c</sup><br><u>(cm<sup>-1</sup>)</u> | <u>O-C</u> |
|----------------------------------|------------------------------------------------|------------------------------------------------|------------|
| $^3I_7$                          | -                                              | 38560                                          |            |
|                                  | -                                              | 568                                            |            |
| 38570                            | 571                                            | -1                                             |            |
|                                  | -                                              | 585                                            |            |
|                                  | -                                              | 590                                            |            |
|                                  | -                                              | 590                                            |            |
| 599                              | 597                                            | 2                                              |            |
|                                  | -                                              | 612                                            |            |
|                                  | -                                              | 614                                            |            |
|                                  | -                                              | 620                                            |            |
|                                  | -                                              | 621                                            |            |
|                                  | -                                              | 624                                            |            |
| 38638 <sup>h</sup>               | 646                                            |                                                |            |
|                                  | -                                              | 647                                            |            |
|                                  | -                                              | 652                                            |            |

---

<sup>a</sup>The principal SLJ-component of the state is given.

<sup>b</sup>The energies quoted as observed are primarily from ref. 62 as confirmed in the present study. In some instances the band energies reported are those found in the present work where no corresponding observations were quoted in (62); there were also cases in which more crystal-field components than would be allowed for a given J-value were quoted in (62). The present model crystal-field calculations were used as the basis for excluding the extra levels. Units of cm<sup>-1</sup> vac.

<sup>c</sup>Energy level parameters are given in Table 4.

<sup>d</sup>Not included in the energy level parameter fitting.

## Appendix VIII. (cont.)

<sup>e</sup>There are 24 crystal-field components belonging principally to the  $^3M_{10}$  and  $^3L_8$  states computed in the energy range between 34234 and 34542  $\text{cm}^{-1}$ .

No structure was observed in this range.

<sup>f</sup>There are 22 crystal-field components belonging principally to the  $^3F_2$  and  $^1L_8$  states computed in the energy range 36450-36703  $\text{cm}^{-1}$ . No structure was observed.

<sup>g</sup>There are 20 crystal-field components belonging principally to the  $^3P_2$  and  $^3L_7$  states computed in the energy range 37975-38237  $\text{cm}^{-1}$ . No structure was observed.

<sup>h</sup>No structure attributable to  $f+f$  transitions was observed at energies  $>36638 \text{ cm}^{-1}$ .

## Appendix IX.

Experimental and Computed Energy Level Structure of  $Dy^{3+}:LaF_4$ 

| SLJ <sup>a</sup><br>State | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C | Fry et al. <sup>d</sup><br>Obs. (cm <sup>-1</sup> ) | SLJ <sup>a</sup><br>State | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C | Fry et al. <sup>d</sup><br>Obs. (cm <sup>-1</sup> ) |
|---------------------------|-------------------------------------------|-------------------------------------------|-----|-----------------------------------------------------|---------------------------|-------------------------------------------|-------------------------------------------|-----|-----------------------------------------------------|
| $^6H_{15/2}$              | 0                                         | 0                                         | 0   | 0                                                   | $^6H_{13/2}$              | 3645                                      | 3639                                      | 6   | 3645                                                |
|                           | 17                                        | 28                                        | -11 | 17                                                  |                           | -                                         | 678                                       | -   | -                                                   |
|                           | 69                                        | 76                                        | -7  | 69                                                  |                           | 701                                       | 681                                       | 20  | 695                                                 |
|                           | 124                                       | 126                                       | -2  | 124                                                 |                           |                                           |                                           |     |                                                     |
|                           | 184                                       | 188                                       | -4  | 184                                                 | $^6H_{11/2}$              | 5883                                      | 5875                                      | 8   | 5882                                                |
|                           | 208                                       | 209                                       | -1  | 208                                                 |                           | 908                                       | 912                                       | -4  | 909                                                 |
|                           | -                                         | 296                                       |     |                                                     |                           | 924                                       | 918                                       | 6   | 925                                                 |
|                           | 307                                       | 316                                       | -9  | 307                                                 |                           | 945                                       | 934                                       | 11  | 945                                                 |
|                           |                                           |                                           |     |                                                     |                           | 976                                       | 973                                       | 3   | 977                                                 |
| $^6H_{13/2}$              | 3503                                      | 3502                                      | 1   | 3502                                                |                           | 6021                                      | 6024                                      | -3  | 6024                                                |
|                           | 575                                       | 568                                       | 7   | 576                                                 |                           |                                           |                                           |     |                                                     |
|                           | 621                                       | 602                                       | 19  | 618                                                 | $^6H_{9/2}$ ,             | 7632                                      | 7630                                      | 2   | 7633                                                |
|                           | 628                                       | 624                                       | 4   | 630                                                 | $^6F_{11/2}$              | 664                                       | 673                                       | -9  | 665                                                 |

Appendix IX. (cont.)

| SLJ <sup>a</sup>    | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>  | Fry et al. <sup>d</sup>         | SLJ <sup>a</sup> | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>  | Fry et al. <sup>d</sup>         |
|---------------------|---------------------|---------------------|---------------------------------|------------------|---------------------|---------------------|---------------------------------|
| State               | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | 0-C<br>Obs. (cm <sup>-1</sup> ) | State            | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | 0-C<br>Obs. (cm <sup>-1</sup> ) |
| $^6\text{H}_{9/2},$ | 7726                | 7728                | -2                              | 7727             | $^6\text{H}_{7/2},$ | 9181                | 9185                            |
| $^6\text{F}_{11/2}$ | 756                 | 776                 | -20                             | 758              | $^6\text{F}_{9/2}$  | 234                 | 238                             |
| 812                 | 828                 | -16                 | 803                             |                  | 282                 | 265                 | 17                              |
| 837                 | 832                 | 5                   | 813                             |                  | 343                 | 330                 | 13                              |
| 840                 | 841                 | -1                  | 842                             |                  | 435                 | 435                 | 0                               |
| 854                 | 862                 | -8                  | 887                             |                  | $^6\text{H}_{5/2}$  | 10222               | 10220                           |
| 930                 | 927                 | 3                   | 933                             |                  |                     |                     | 2                               |
| 996                 | 998                 | -2                  | 8019                            |                  | 285                 | 284                 | 1                               |
| 8075                | 8065                | 10                  | 075                             |                  | 345                 | 346                 | -1                              |
| $^6\text{H}_{7/2},$ | 8992                | 8996                | -4                              | 8990             | $^6\text{F}_{7/2}$  | 11037               | 11038                           |
| $^6\text{F}_{9/2}$  | 9074                | 9085                | -11                             | 9071             |                     | 108                 | 099                             |
| 887                 | 891                 | -4                  | 085                             |                  | 138                 | 138                 | 0                               |
| 144                 | 139                 | 5                   | 141                             |                  | 152                 | 142                 | 10                              |



## Appendix IX. (cont.)

| SLJ <sup>a</sup>               | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>  | SLJ <sup>a</sup>                 | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>  |
|--------------------------------|---------------------|---------------------|----------------------------------|---------------------|---------------------|
| State                          | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | State                            | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |
| <sup>4</sup> G <sub>11/2</sub> | -                   | 23611               | <sup>4</sup> I <sub>13/2</sub> , | -                   | 25626               |
|                                |                     |                     | <sup>4</sup> F <sub>7/2</sub> ,  | 25661               | 674 -13             |
| <sup>4</sup> M <sub>21/2</sub> | 24984               | 24971               | <sup>4</sup> K <sub>17/2</sub>   | 691                 | 722 -31             |
|                                | 25001               | 998                 | 3                                | 740                 | 742 -2              |
| 067                            | 25070               | -3                  |                                  | 748                 | 759 -11             |
| 090                            | 092                 | -2                  |                                  | 778                 | 814 -36             |
| -                              | 172                 |                     |                                  | -                   | 829                 |
| 187                            | 185                 | 2                   |                                  | 824                 | 837 -13             |
| -                              | 186                 |                     |                                  | -                   | 845                 |
| 226                            | 223                 | 3                   |                                  | 849                 | 861 -12             |
| -                              | 273                 |                     |                                  | 867                 | 892 -25             |
| 303                            | 307                 | -4                  |                                  | -                   | 894                 |
| 341                            | 333                 | 8                   |                                  | -                   | 912                 |
|                                |                     |                     |                                  | 903                 | 919 -16             |

Appendix IX. (cont.)

| SLJ <sup>a</sup>    | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>  | SLJ <sup>a</sup> | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>  |       |
|---------------------|---------------------|---------------------|------------------|---------------------|---------------------|-------|
| State               | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | State            | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |       |
|                     |                     | 0-C                 |                  |                     | 0-C                 |       |
| $^4\text{L}_{13/2}$ | 25918               | 25929               | -11              | $^4\text{M}_{19/2}$ | 26509               | 26528 |
| $^4\text{F}_{7/2}$  | -                   | 935                 |                  | 571                 | 552                 | 19    |
| $^4\text{K}_{17/2}$ | 940                 | 952                 | -12              |                     | 583                 | 563   |
|                     | 953                 | 962                 | -9               |                     |                     | 20    |
|                     | -                   | 981                 |                  | $^6\text{P}_{3/2}$  | 27476               | 27493 |
|                     | 990                 | 982                 | 8                |                     | 529                 | -17   |
|                     |                     |                     |                  |                     | 545                 | -16   |
|                     |                     |                     |                  |                     |                     |       |
| $^4\text{M}_{19/2}$ | -                   | 26242               |                  | $^6\text{P}_{5/2}$  | 27374               | 27580 |
|                     |                     | -                   | 251              |                     | 616                 | 611   |
|                     | 26260               | 257                 | 3                |                     | 658                 | 660   |
|                     | -                   | 291                 |                  |                     |                     | -2    |
|                     | -                   | 397                 |                  | $^4\text{T}_{11/2}$ | 27912               | 27903 |
| 4448                | 445                 | 3                   |                  |                     | -                   | 9     |
|                     | -                   |                     |                  |                     |                     | 984   |
| 475                 |                     |                     |                  |                     |                     | 982   |
|                     |                     |                     |                  |                     |                     | 991   |

Appendix IX. (cont.)

| SLJ <sup>a</sup>      | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>  | SLJ <sup>a</sup>      | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>  |
|-----------------------|---------------------|---------------------|-----------------------|---------------------|---------------------|
| State                 | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | State                 | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |
| $^4\text{I}_{11/2}$   | -                   | 28036               | $^4\text{M}_{15/2}^*$ | 28819               | 28808               |
|                       | 28030               | 046                 | $^6\text{P}_{7/2}$    | 834                 | 835                 |
| 068                   | 072                 | -4                  | $^4\text{F}_{5/2}^*$  | 29527               | 29517               |
|                       |                     |                     | $^4\text{I}_{9/2}$    | 630                 | 614                 |
| $^4\text{M}_{15/2}^*$ | -                   | 28492               |                       |                     | 16                  |
| $^6\text{P}_{7/2}$    | 536                 | 523                 | 13                    | 660                 | 658                 |
| 572                   | 575                 | -3                  |                       | 676                 | 683                 |
| 605                   | 607                 | -2                  |                       | 746                 | 725                 |
| 630                   | 634                 | -4                  |                       | 780                 | 783                 |
| 651                   | 641                 | 10                  |                       | 851                 | 842                 |
| 666                   | 673                 | -7                  |                       | 884                 | 883                 |
|                       | -                   | 676                 |                       |                     | 1                   |
| 703                   | 698                 | 5                   | $^4\text{G}_{9/2}^*$  | -                   | 29960               |
| 726                   | 727                 | -1                  | $^4\text{M}_{17/2}$   | 29980               | 986                 |

## Appendix IX. (cont.)

| SLJ <sup>a</sup>                | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>  | SLJ <sup>a</sup>                 | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>  |
|---------------------------------|---------------------|---------------------|----------------------------------|---------------------|---------------------|
| State                           | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | State                            | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |
| O-C                             |                     |                     | O-C                              |                     |                     |
| <sup>4</sup> C <sub>9/2</sub> , | -                   | 29997               | <sup>6</sup> P <sub>3/2</sub>    | 30879               | 30862               |
| <sup>4</sup> M <sub>17/2</sub>  | -                   | 30020               |                                  | 914                 | 898                 |
|                                 | -                   | 025                 |                                  |                     | 16                  |
|                                 | -                   | 041                 | <sup>4</sup> K <sub>15/2</sub> * | 31119               | 31105               |
| 30073                           | 081                 | -8                  | <sup>4</sup> L <sub>19/2</sub>   | 134                 | 148                 |
|                                 | -                   | 092                 |                                  | 170                 | 169                 |
|                                 | -                   | 106                 |                                  | 195                 | 190                 |
| 139                             | 151                 | -12                 |                                  | 214                 | 218                 |
|                                 | -                   | 194                 |                                  | 226                 | 245                 |
| 241                             | 224                 | 17                  |                                  | 262                 | 266                 |
|                                 | -                   | 263                 |                                  | 282                 | 285                 |
| 301                             | 296                 | 5                   |                                  | 294                 | 298                 |
|                                 | -                   | -                   |                                  | -                   | 316                 |
|                                 | -                   | -                   |                                  | -                   | 350                 |

Appendix IX. (cont.)

| SLJ <sup>a</sup>                 | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | State<br>0-C | SLJ <sup>a</sup>               | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | State<br>O-C |
|----------------------------------|-------------------------------------------|-------------------------------------------|--------------|--------------------------------|-------------------------------------------|-------------------------------------------|--------------|
| <sup>4</sup> K <sub>15/2</sub> * | -                                         | 31356                                     |              | <sup>4</sup> D <sub>5/2</sub>  | -                                         | 32087                                     |              |
| <sup>4</sup> L <sub>19/2</sub>   | 31369                                     | 370                                       | -1           | <sup>4</sup> D <sub>1/2</sub>  | -                                         | 152                                       |              |
|                                  | -                                         | 375                                       |              | <sup>4</sup> D <sub>5/2</sub>  | -                                         | 168                                       |              |
|                                  | -                                         | 389                                       |              |                                |                                           |                                           |              |
|                                  | -                                         | 415                                       |              | <sup>4</sup> K <sub>13/2</sub> | -                                         | 33148                                     |              |
| 443                              | 456                                       | -13                                       |              |                                | -                                         | 180                                       |              |
|                                  | -                                         | 462                                       |              |                                | 33185                                     | 185                                       | 0            |
|                                  | -                                         |                                           |              |                                | -                                         | 197                                       |              |
| <sup>4</sup> G <sub>7/2</sub>    | 31571                                     | 31565                                     | 6            |                                | 205                                       | 203                                       | 2            |
|                                  | 651                                       | 648                                       | 3            |                                | 221                                       | 206                                       | 15           |
|                                  | -                                         | 698                                       |              |                                | 239                                       | 219                                       | 20           |
|                                  | 707                                       | 710                                       | -3           |                                |                                           |                                           |              |
|                                  |                                           |                                           |              | <sup>4</sup> H <sub>13/2</sub> | -                                         | 33485                                     |              |
|                                  |                                           |                                           |              |                                | 32062                                     | -                                         |              |

## Appendix IX. (cont.)

| SLJ <sup>a</sup>    | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>  | SLJ <sup>a</sup>     | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>  |
|---------------------|---------------------|---------------------|----------------------|---------------------|---------------------|
| State               | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | State                | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |
| $^4\text{H}_{13/2}$ | -                   | 33497               | $^4\text{H}_{11/2},$ | 34227               | 34237               |
|                     | 33500               | 500                 | $^4\text{L}_{11/2},$ | 240                 | -10                 |
| 508                 | 506                 | 2                   | $^4\text{F}_{5/2},$  | -                   | -1                  |
| 537                 | 518                 | 19                  | $^4\text{H}_{9/2}$   | 278                 | 241                 |
| 552                 | 553                 | -1                  |                      | -                   | 260                 |
| 600                 | 566                 | 34                  |                      | 293                 | 274                 |
|                     |                     |                     |                      | 293                 | 285                 |
|                     |                     |                     |                      | -                   | 4                   |
|                     |                     |                     |                      | -                   | 8                   |
| $^4\text{F}_{3/2}$  | 33628               | 33632               | $^4\text{F}_{3/2},$  | -                   | 292                 |
| 642                 | 639                 | 3                   | $^4\text{P}_{7/2}$   | -                   | 298                 |
|                     |                     |                     |                      | -                   | 324                 |
|                     |                     |                     |                      | -                   | 338                 |
|                     |                     |                     |                      | 346                 | 348                 |
|                     |                     |                     |                      | -                   | -2                  |
|                     |                     |                     |                      | -                   | 355                 |
| 020                 | 030                 | -10                 |                      | -                   | 358                 |
| 031                 | 041                 | -10                 |                      | -                   | 370                 |
| 070                 | 069                 | 1                   |                      | 373                 | 381                 |
|                     |                     |                     |                      |                     | -8                  |

## Appendix IX. (cont.)

| SLJ <sup>a</sup>    | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>  | SLJ <sup>a</sup>    | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>  |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| State               | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | State               | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |
| $^4\text{H}_{11/2}$ | 34398               | 34383               | $^4\text{H}_{11/2}$ | 34933               | 34934               |
| $^4\text{L}_{17/2}$ | 406                 | 400                 |                     | 969                 | 990                 |
| $^4\text{F}_{5/2}$  | -                   | 420                 |                     | -                   | -21                 |
| $^4\text{H}_{9/2}$  | 430                 | 436                 | $^4\text{K}_{11/2}$ | -                   | 35776               |
|                     | 445                 | 448                 | $^4\text{G}_{7/2}$  | -                   | 818                 |
|                     | -                   | 457                 | -                   | -                   | 902                 |
|                     | -                   | 470                 |                     | 35936               | 948                 |
|                     | -                   | 472                 |                     | 961                 | 971                 |
|                     | 505                 | 493                 | 12                  | 36002               | 36005               |
|                     | 34847               | 34846               |                     | 022                 | 014                 |
|                     | 869                 | 874                 |                     | 051                 | 056                 |
|                     | 902                 | 891                 |                     | 077                 | 100                 |
|                     | 910                 | 910                 |                     | -                   | -23                 |
|                     |                     |                     |                     |                     | 153                 |
|                     |                     |                     |                     |                     | 0                   |

## Appendix IX. (cont.)

| SLJ <sup>a</sup> | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C | SLJ <sup>a</sup> | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | O-C |
|------------------|-------------------------------------------|-------------------------------------------|-----|------------------|-------------------------------------------|-------------------------------------------|-----|
| $^4L_{13/2}^*$   | 36484                                     | 36480                                     | 4   | $^4L_{13/2}^*$   | -                                         | 36645                                     |     |
| $^4G_{5/2}^*$    | 498                                       | 500                                       | -2  | $^4G_{5/2}^*$    | 36653                                     | 660                                       | -7  |
| $^4L_{15/2}$     | -                                         | 505                                       |     | $^4L_{15/2}$     | 672                                       | 664                                       | 8   |
| 522              | 533                                       | -11                                       |     |                  | 686                                       | 692                                       | -6  |
| -                | 553                                       |                                           |     |                  |                                           |                                           |     |
| -                | 558                                       |                                           |     | $^4G_{9/2}$      | 36752                                     | 36746                                     | 6   |
| -                | 574                                       |                                           |     |                  | 780                                       | 781                                       | -1  |
| -                | 579                                       |                                           |     |                  | -                                         | 803                                       |     |
| 590              | 588                                       | 2                                         |     |                  | -                                         | 833                                       |     |
| -                | 597                                       |                                           |     |                  | -                                         | 846                                       |     |
| -                | 606                                       |                                           |     |                  |                                           |                                           |     |
| 614              | 611                                       | 3                                         |     | $^4G_{7/2}$      | -                                         | 37649                                     |     |
| -                | -                                         |                                           |     | $^4P_{1/2}$      | -                                         | 674                                       |     |
| 633              | 627                                       | 6                                         |     | $^4G_{7/2}$      | -                                         | 682                                       |     |

## Appendix IX. (cont.)

| SLJ <sup>a</sup>               | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>  |     | SLJ <sup>a</sup>               | Obsd. <sup>b</sup>  | Calc. <sup>c</sup>         |     |
|--------------------------------|---------------------|---------------------|-----|--------------------------------|---------------------|----------------------------|-----|
| State                          | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | O-C | State                          | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> )        | O-C |
| <sup>4</sup> G <sub>7/2</sub>  | -                   | 37 75               |     | <sup>2</sup> L <sub>15/2</sub> | -                   | 38366                      |     |
|                                | -                   | 789                 |     |                                | -                   | 451                        |     |
|                                |                     |                     |     |                                | -                   | 502                        |     |
| <sup>4</sup> F <sub>3/2</sub>  | 37933               | 37921               | 12  | <sup>4</sup> P <sub>5/2</sub>  | 38926               | 38911                      | 15  |
|                                | 962                 | 952                 | 10  |                                | 997                 | 989                        | 8   |
|                                |                     |                     |     |                                |                     |                            |     |
|                                | -                   | 38047               |     | <sup>4</sup> P <sub>3/2</sub>  | 39159               | 39163                      | -4  |
|                                | -                   | 084                 |     |                                | 182                 | 185                        | 3   |
| <sup>2</sup> L <sub>15/2</sub> | -                   | 170                 |     |                                |                     |                            |     |
|                                | -                   | 264                 |     |                                |                     |                            |     |
|                                | -                   | 274                 |     |                                |                     |                            |     |
|                                |                     |                     |     |                                |                     |                            |     |
|                                |                     |                     |     |                                |                     | (39185-50000) <sup>e</sup> |     |

<sup>a</sup>The leading component of the eigenvector is given.<sup>b</sup>The components of the ground state are from Ref. 64. All values in cm<sup>-1</sup> vac.<sup>c</sup>Energy level parameters are given in Table 4.<sup>d</sup>Ref. 64.<sup>e</sup>At >39185 cm<sup>-1</sup>, a large number of crystal-field components is computed over the energy range to 50000 cm<sup>-1</sup>; however, there are five intervals of > 650 cm<sup>-1</sup> in which no energy levels are computed. These are 39185-40531 ( $\Delta = 1346$ ) cm<sup>-1</sup>, 43977-44798 ( $\Delta = 821$ ) cm<sup>-1</sup>, 45073-46225 ( $\Delta = 1152$ ) cm<sup>-1</sup>, 46471-47462 ( $\Delta = 991$ ) cm<sup>-1</sup>, and 48618-49406 ( $\Delta = 788$ ) cm<sup>-1</sup>.

Appendix X.  
Experimental and Computed Energy Level Structure of  $Tb^{3+}:LaF_3$

| SLJ <sup>a</sup><br>State | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C | SLJ <sup>a</sup><br>State | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C |
|---------------------------|-------------------------------------------|-------------------------------------------|-----|---------------------------|-------------------------------------------|-------------------------------------------|-----|
| $^7F_6$                   | 0                                         | -6                                        | 6   | $^7F_4$                   | -                                         | 3281                                      |     |
|                           | 6                                         | 0                                         | -6  |                           | -                                         | 293                                       |     |
|                           | -                                         | 13                                        |     |                           | -                                         | 383                                       |     |
|                           | -                                         | 20                                        |     |                           | -                                         | 396                                       |     |
|                           | 44                                        | 26                                        | 18  |                           | -                                         | 397                                       |     |
|                           | 49                                        | 58                                        | -9  |                           | -                                         | 441                                       |     |
|                           | 80                                        | 86                                        | -6  |                           | -                                         | 446                                       |     |
|                           | -                                         | 88                                        |     |                           | -                                         | 506                                       |     |
|                           | -                                         | 108                                       |     |                           | -                                         | 506                                       |     |
|                           | -                                         | 119                                       |     |                           | -                                         | 685                                       |     |
|                           | -                                         | 162                                       |     |                           |                                           |                                           |     |
|                           | -                                         | 233                                       |     | $^7F_3$                   | 4329                                      | 4331                                      | -2  |
|                           | -                                         | 244                                       |     |                           | 413                                       | 407                                       | 6   |
|                           |                                           |                                           |     |                           | 421                                       | 415                                       | 6   |
| $^7F_5$                   | -                                         | 2035                                      |     |                           | 429                                       | 425                                       | 4   |
|                           | -                                         | 043                                       |     |                           | 440                                       | 442                                       | -2  |
|                           | -                                         | 063                                       |     |                           | 461                                       | 448                                       | 13  |
|                           | -                                         | 076                                       |     |                           | 487                                       | 473                                       | 14  |
|                           | -                                         | 082                                       |     |                           |                                           |                                           |     |
|                           | -                                         | 131                                       |     | $^7F_2$                   | 5016                                      | 5041                                      | -25 |
|                           | -                                         | 133                                       |     |                           | 038                                       | 045                                       | -7  |
|                           | -                                         | 167                                       |     |                           | -                                         | 161                                       |     |
|                           | -                                         | 261                                       |     |                           | 166                                       | 164                                       | 2   |
|                           | -                                         | 263                                       |     |                           | 197                                       | 200                                       | -3  |
|                           | -                                         | 313                                       |     |                           |                                           |                                           |     |
|                           |                                           |                                           |     | $^7F_1$                   | 5502                                      | 5522                                      | -20 |
|                           |                                           |                                           |     |                           | 568                                       | 586                                       | -18 |
|                           |                                           |                                           |     |                           | 617                                       | 632                                       | -15 |

## Appendix X. (cont.)

| <u>SLJ<sup>a</sup></u> | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> | <u>0-C</u> | <u>SLJ<sup>a</sup></u> | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> | <u>0-C</u> |
|------------------------|--------------------------|--------------------------|------------|------------------------|--------------------------|--------------------------|------------|
| <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> |            | <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> |            |
| $^7F_0$                | 5819                     | 5806                     | 13         | $^5G_6$                | —                        | 26578                    |            |
|                        |                          |                          |            |                        | —                        | 609                      |            |
| $^5D_4$                | —                        | 20504                    |            |                        | 26631                    | 634                      | —3         |
|                        | 20507                    | 506                      | 1          |                        | —                        | 680                      |            |
|                        | 534                      | 533                      | 1          |                        |                          |                          |            |
|                        | 534                      | 534                      | 0          | $^5L_{10}$             | —                        | 26946                    |            |
|                        | —                        | 539                      |            |                        | 26962                    | 949                      | 13         |
|                        | —                        | 548                      |            |                        | —                        | 966                      |            |
|                        | 555                      | 560                      | —5         |                        | —                        | 966                      |            |
|                        | 569                      | 568                      | 1          |                        | 981                      | 972                      | 9          |
|                        | 580                      | 588                      | —8         |                        | 994                      | 981                      | 13         |
|                        |                          |                          |            |                        | —                        | 27012                    |            |
| $^5D_3$                | 26270                    | 26263                    | 7          |                        | 27029                    | 015                      | 14         |
|                        | 274                      | 266                      | 8          |                        | 048                      | 041                      | 7          |
|                        | —                        | 281                      |            |                        | 078                      | 075                      | 3          |
|                        | —                        | 285                      |            |                        | 142                      | 152                      | —10        |
|                        | 296                      | 302                      | —6         |                        | 161                      | 154                      | 7          |
|                        | 325                      | 318                      | 7          |                        | 183                      | 166                      | 17         |
|                        | 346                      | 344                      | 2          |                        | —                        | 201                      |            |
|                        |                          |                          |            |                        | 225                      | 215                      | 10         |
| $^5G_6$                | 26405                    | 26410                    | —5         |                        | —                        | 234                      |            |
|                        | 415                      | 423                      | —8         |                        | 251                      | 249                      | 2          |
|                        | 454                      | 462                      | —8         |                        | —                        | 274                      |            |
|                        | 482                      | 494                      | —12        |                        | —                        | 278                      |            |
|                        | 493                      | 503                      | —10        |                        | —                        | 286                      |            |
|                        | —                        | 536                      |            |                        | 322                      | 306                      | 16         |
|                        | 532                      | 537                      | —5         |                        |                          |                          |            |
|                        | 549                      | 556                      | —7         | $^5G_5$                | —                        | 27829                    |            |
|                        | —                        | 564                      |            |                        | —                        | 833                      |            |

## Appendix X. (cont.)

| <u>SLJ<sup>a</sup></u> | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            | <u>SLJ<sup>a</sup></u> | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            |
|------------------------|--------------------------|--------------------------|------------|------------------------|--------------------------|--------------------------|------------|
| <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>0-C</u> | <u>State</u>           | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>0-C</u> |
| $^5G_5$                | 27833                    | 27833                    | 0          | $^5G_4$ ,              | 28480                    | 28483                    | -3         |
|                        | 839                      | 837                      | 2          | $^5L_9$                | 491                      | 496                      | -5         |
|                        | 856                      | 872                      | -16        |                        | 514                      | 510                      | 4          |
|                        | 882                      | 883                      | -1         |                        | 540                      | 542                      | -2         |
|                        | -                        | 891                      |            |                        | -                        | 552                      |            |
|                        | 903                      | 905                      | -2         |                        | -                        | 563                      |            |
|                        | 910                      | 916                      | -6         |                        | -                        | 581                      |            |
|                        | 930                      | 926                      | 4          |                        | 604                      | 598                      | 6          |
|                        | 989                      | 972                      | 17         |                        | 618                      | 614                      | 4          |
|                        |                          |                          |            |                        | -                        | 626                      |            |
| $^5D_2$                | 28197                    | 28215                    | -18        |                        | -                        | 633                      |            |
|                        | 206                      | 222                      | -16        |                        | -                        | 663                      |            |
|                        | -                        | 240                      |            |                        | -                        | 665                      |            |
|                        | 233                      | 241                      | -8         |                        | -                        | 671                      |            |
|                        | 262                      | 260                      | 2          |                        | -                        | 678                      |            |
| $^5G_4$ ,              | -                        | 28316                    |            | $^5G_3$                | 29030                    | 29019                    | 11         |
| $^5L_9$                | 28336                    | 344                      | -8         |                        | 032                      | 029                      | 3          |
|                        | -                        | 345                      |            |                        | 037                      | 038                      | -1         |
|                        | -                        | 350                      |            |                        | 045                      | 039                      | 6          |
|                        | 348                      | 351                      | -3         |                        | -                        | 050                      |            |
|                        | 364                      | 367                      | -3         |                        | 068                      | 051                      | 17         |
|                        | -                        | 375                      |            |                        | 090                      | 087                      | 3          |
|                        | 378                      | 376                      | 2          |                        |                          |                          |            |
|                        | 392                      | 392                      | 0          | $^5L_8$ ,              | -                        | 29183                    |            |
|                        | 428                      | 411                      | 17         | $^5L_7$ ,              | 29216                    | 220                      | -4         |
|                        | -                        | 459                      |            | $^5G_2$ ,              | 234                      | 230                      | 4          |
|                        | 460                      | 460                      | 0          | $^5L_6$                | -                        | 246                      |            |
|                        | -                        | 479                      |            |                        | -                        | 249                      |            |

## Appendix X. (cont.)

| <u>SLJ<sup>a</sup></u>        | <u>Obsd.<sup>b</sup></u>             | <u>Calc.<sup>c</sup></u> | <u>O-C</u> | <u>SLJ<sup>a</sup></u>      | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> | <u>O-C</u> |
|-------------------------------|--------------------------------------|--------------------------|------------|-----------------------------|--------------------------|--------------------------|------------|
| <u>State</u>                  | <u>(cm<sup>-1</sup>)</u>             | <u>(cm<sup>-1</sup>)</u> |            | <u>State</u>                | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> |            |
| <sup>5</sup> L <sub>8</sub> , | 29274                                | 29279                    | -5         | <sup>5</sup> D <sub>0</sub> |                          | -                        | 31391      |
| <sup>5</sup> L <sub>7</sub> , | -                                    | 284                      |            | <sup>5</sup> H <sub>7</sub> |                          | -                        | 31399      |
| <sup>5</sup> G <sub>2</sub> , | -                                    | 291                      |            |                             | 31402                    | 402                      | 0          |
| <sup>5</sup> L <sub>6</sub>   | 295                                  | 295                      | 0          |                             | -                        | 408                      |            |
|                               | 336                                  | 329                      | 7          |                             | -                        | 452                      |            |
|                               | -                                    | 348                      |            |                             | -                        | 459                      |            |
|                               | 360                                  | 354                      | 6          |                             | 494                      | 496                      | -2         |
|                               | -                                    | 370                      |            |                             | -                        | 506                      |            |
|                               | 392                                  | 399                      | -7         |                             | 509                      | 506                      | 3          |
|                               | -                                    | 406                      |            |                             | -                        | 522                      |            |
|                               | -                                    | 412                      |            |                             | -                        | 528                      |            |
|                               | -                                    | 413                      |            |                             | 533                      | 535                      | -2         |
|                               | 430                                  | 426                      | 4          |                             | -                        | 545                      |            |
|                               | -                                    | 434                      |            |                             | -                        | 592                      |            |
|                               | 465                                  | 447                      | 18         |                             | 613                      | 608                      | 5          |
|                               | -                                    | 481                      |            |                             | 637                      | 628                      | 9          |
|                               | 503                                  | 502                      | 1          |                             | -                        |                          |            |
|                               | -                                    | 504                      |            | <sup>5</sup> H <sub>6</sub> | 32889                    | 32894                    | -5         |
|                               | 520                                  | 521                      | -1         |                             | 918                      | 929                      | -11        |
|                               | 552                                  | 542                      | 10         |                             | 941                      | 942                      | -1         |
|                               | -                                    | 565                      |            |                             | 982                      | 992                      | -10        |
|                               | -                                    | 572                      |            |                             | -                        | 998                      |            |
|                               | -                                    | 592                      |            |                             | 999                      | 999                      | 0          |
|                               | <sup>(29598-30057)<sup>d</sup></sup> |                          |            |                             | -                        | 33025                    |            |
| <sup>5</sup> D <sub>1</sub>   | 30765                                | 30755                    | 10         |                             | 33027                    | 028                      | -1         |
|                               | 774                                  | 770                      | 4          |                             | -                        | 031                      |            |
|                               | 800                                  | 788                      | 12         |                             | 047                      | 038                      | 9          |
|                               |                                      |                          |            |                             | -                        | 102                      |            |

## Appendix X. (cont.)

| SLJ <sup>a</sup><br><u>State</u>                                                              | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C | SLJ <sup>a</sup><br><u>State</u>                                                              | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C |
|-----------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-----|-----------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-----|
| <sup>5</sup> H <sub>5</sub>                                                                   | 33114                                     | 33104                                     | 10  | <sup>5</sup> F <sub>5</sub> ,<br><sup>5</sup> H <sub>3</sub> ,<br><sup>5</sup> I <sub>8</sub> | 35021                                     | 35030                                     | -9  |
|                                                                                               | 146                                       | 119                                       | 27  |                                                                                               | 044                                       | 053                                       | -9  |
|                                                                                               | -                                         | 817                                       |     |                                                                                               | -                                         | 060                                       |     |
|                                                                                               | -                                         | 838                                       |     |                                                                                               | 072                                       | 062                                       | 10  |
|                                                                                               | -                                         | 850                                       |     |                                                                                               | -                                         | 068                                       |     |
|                                                                                               | -                                         | 878                                       |     |                                                                                               | -                                         | 085                                       |     |
|                                                                                               | -                                         | 882                                       |     |                                                                                               | -                                         | 090                                       |     |
|                                                                                               | 887                                       | 885                                       | 2   |                                                                                               | -                                         | 094                                       |     |
|                                                                                               | 909                                       | 919                                       | -10 |                                                                                               | -                                         | 102                                       |     |
|                                                                                               | -                                         | 923                                       |     |                                                                                               | -                                         | 117                                       |     |
|                                                                                               | -                                         | 924                                       |     |                                                                                               | 139                                       | 137                                       | 2   |
|                                                                                               | -                                         | 927                                       |     |                                                                                               | 167                                       | 168                                       | -1  |
|                                                                                               | 939                                       | 937                                       | 2   |                                                                                               | -                                         | 176                                       |     |
|                                                                                               |                                           |                                           |     |                                                                                               | 179                                       | 178                                       | 1   |
| <sup>5</sup> H <sub>4</sub>                                                                   | -                                         | 34435                                     |     |                                                                                               | -                                         | 183                                       |     |
|                                                                                               | -                                         | 442                                       |     |                                                                                               | 203                                       | 214                                       | -11 |
|                                                                                               | -                                         | 452                                       |     |                                                                                               | 211                                       | 228                                       | -17 |
|                                                                                               | 34452                                     | 455                                       | -3  |                                                                                               | -                                         | 229                                       |     |
|                                                                                               | -                                         | 461                                       |     |                                                                                               | 237                                       | 235                                       | 2   |
|                                                                                               | -                                         | 462                                       |     |                                                                                               | -                                         | 243                                       |     |
|                                                                                               | -                                         | 482                                       |     |                                                                                               | -                                         | 246                                       |     |
|                                                                                               | -                                         | 485                                       |     |                                                                                               | 256                                       | 250                                       | 6   |
|                                                                                               | 488                                       | 489                                       | -1  |                                                                                               | 274                                       | 261                                       | 13  |
|                                                                                               |                                           |                                           |     |                                                                                               | -                                         | 309                                       |     |
| <sup>5</sup> F <sub>5</sub> ,<br><sup>5</sup> H <sub>3</sub> ,<br><sup>5</sup> I <sub>8</sub> | -                                         | 34958                                     |     |                                                                                               | -                                         | 313                                       |     |
|                                                                                               | -                                         | 960                                       |     |                                                                                               | -                                         | 315                                       |     |
|                                                                                               | -                                         | 986                                       |     |                                                                                               | 316                                       | 316                                       | 0   |
|                                                                                               | 34980                                     | 987                                       | -7  |                                                                                               | -                                         | 323                                       |     |
|                                                                                               | 35005                                     | 990                                       | 15  |                                                                                               | -                                         | 327                                       |     |
|                                                                                               |                                           |                                           |     |                                                                                               | 348                                       | 330                                       | 18  |

## Appendix X (cont.)

| <u>SLJ<sup>a</sup></u>        | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            | <u>SLJ<sup>a</sup></u>        | <u>Obsd.<sup>b</sup></u> | <u>Calc.<sup>c</sup></u> |            |
|-------------------------------|--------------------------|--------------------------|------------|-------------------------------|--------------------------|--------------------------|------------|
| <u>State</u>                  | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>O-C</u> | <u>State</u>                  | <u>(cm<sup>-1</sup>)</u> | <u>(cm<sup>-1</sup>)</u> | <u>O-C</u> |
| <sup>5</sup> F <sub>4</sub>   | 35479                    | 35474                    | 5          | <sup>5</sup> F <sub>3</sub> , |                          | -                        | 36737      |
|                               | -                        | 505                      |            | <sup>5</sup> I <sub>7</sub>   |                          | -                        | 739        |
|                               | -                        | 510                      |            |                               | 36741                    | 748                      | -7         |
|                               | -                        | 510                      |            |                               |                          | -                        | 750        |
|                               | -                        | 523                      |            |                               |                          | -                        | 764        |
|                               | -                        | 533                      |            |                               |                          | -                        | 766        |
|                               | 555                      | 546                      | 9          |                               |                          | -                        | 766        |
|                               | -                        | 581                      |            |                               | 773                      | 774                      | -1         |
|                               | 588                      | 588                      | 0          |                               |                          | -                        | 783        |
|                               |                          |                          |            |                               | 786                      | 787                      | -1         |
| <sup>5</sup> F <sub>3</sub> , | -                        | 36587                    |            |                               |                          | -                        | 795        |
| <sup>5</sup> I <sub>7</sub>   | -                        | 588                      |            |                               |                          |                          |            |
|                               | 36619                    | 599                      | 20         | <sup>5</sup> F <sub>2</sub>   |                          | -                        | 37226      |
|                               | -                        | 635                      |            |                               |                          | -                        | 230        |
|                               | -                        | 663                      |            |                               |                          | -                        | 256        |
|                               | -                        | 670                      |            |                               |                          | -                        | 278        |
|                               | 679                      | 682                      | -3         |                               |                          | -                        | 280        |
|                               | -                        | 723                      |            |                               |                          |                          |            |
|                               | -                        | 729                      |            | <sup>5</sup> F <sub>1</sub>   |                          | -                        | 37527      |
|                               | 731                      | 735                      | -4         |                               |                          | -                        | 555        |
|                               | 731                      | 736                      | -5         |                               |                          | -                        | 579        |
|                               | 348                      | 330                      | 18         |                               |                          |                          |            |

(37652-38193)<sup>e</sup>

## Appendix X (cont.)

| SLJ <sup>a</sup><br><u>State</u> | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C | SLJ <sup>a</sup><br><u>State</u> | Obsd. <sup>b</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>c</sup><br>(cm <sup>-1</sup> ) | 0-C                        |
|----------------------------------|-------------------------------------------|-------------------------------------------|-----|----------------------------------|-------------------------------------------|-------------------------------------------|----------------------------|
| $^5K_9$ ,                        | 39210                                     | 39221                                     | -11 |                                  | -                                         | 410                                       |                            |
| $^5D_2$                          | -                                         | 224                                       |     |                                  | -                                         | 450                                       |                            |
|                                  | -                                         | 226                                       | 11  |                                  | -                                         | 454                                       |                            |
|                                  | -                                         | 233                                       |     |                                  | -                                         | 475                                       |                            |
|                                  | -                                         | 246                                       |     |                                  | -                                         | 480                                       |                            |
|                                  | -                                         | 269                                       |     |                                  | -                                         | 489                                       |                            |
| 265                              | 280                                       | -15                                       |     |                                  | -                                         | 502                                       |                            |
|                                  | -                                         | 303                                       |     |                                  | -                                         | 503                                       |                            |
|                                  | -                                         | 305                                       |     |                                  | -                                         | 513                                       |                            |
| 356                              | 374                                       | -18                                       |     |                                  | -                                         | 521                                       |                            |
|                                  | -                                         | 378                                       |     |                                  | -                                         | 521                                       |                            |
| 383                              | 399                                       | -16                                       |     |                                  |                                           |                                           |                            |
|                                  | -                                         | 405                                       |     |                                  |                                           |                                           | (39522-50000) <sup>f</sup> |

<sup>a</sup>The leading component of the eigenvector is given.

<sup>b</sup>Units of cm<sup>-1</sup> vac.

<sup>c</sup>The energy level parameters are given in Table 4.

<sup>d</sup>There are 22 levels belonging principally to the  $^5L_7$ ,  $^5D_2$ , and  $^5L_6$  states in the interval 29598-30059 cm<sup>-1</sup>.

<sup>e</sup>There are 33 levels belonging principally to the  $^5I_6$ ,  $^5I_4$ , and  $^5I_5$  states in the interval 37657-38193 cm<sup>-1</sup>. No structure was observed.

<sup>f</sup>At >39521 cm<sup>-1</sup> the density of computed levels is high. Energy gaps in the range 39522-50000 cm<sup>-1</sup>, i.e., regions of >650 cm<sup>-1</sup> where no crystal-field components are computed, are as follows: 39522-40253 ( $\Delta=731$ ) cm<sup>-1</sup>, 43645-44415 ( $\Delta=770$ ) cm<sup>-1</sup>, 44568-45281 ( $\Delta=713$ ) cm<sup>-1</sup>, and 48392-49112 ( $\Delta=720$ ) cm<sup>-1</sup>.

## Appendix XI.

Experimental and Computed Energy Level Structure for  $\text{Gd}^{3+}:\text{LaF}_3$ 

| SLJ<br>State       | Expt. <sup>a</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>b</sup><br>(cm <sup>-1</sup> ) | 0-C                     | SLJ<br>State                                | Expt. <sup>a</sup><br>(cm <sup>-1</sup> ) | Calc. <sup>b</sup><br>(cm <sup>-1</sup> ) | 0-C                             |
|--------------------|-------------------------------------------|-------------------------------------------|-------------------------|---------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------|
| $^8\text{S}_{7/2}$ | 0                                         | 19.6<br>19.7<br>19.8<br>19.9              | -20                     | $^6\text{I}_{17/2}$                         | 36340<br>342<br>346<br>351<br>354         | 36351<br>351<br>352<br>354<br>355         | -11<br>-9<br>-6<br>-3<br>-1     |
| $^6\text{P}_{7/2}$ | 32176<br>185<br>199<br>226                | 32169<br>177<br>194<br>224                | 7<br>8<br>5<br>2        |                                             | 363<br>370<br>377<br>384                  | 357<br>360<br>362<br>364                  | 6<br>10<br>15<br>20             |
| $^6\text{P}_{5/2}$ | 32771<br>791<br>808                       | 32774<br>780<br>802                       | -3<br>11<br>6           | $^6\text{I}_{11/2}$                         | 36549<br>561<br>571<br>584                | 36554<br>563<br>572<br>585                | -5<br>-2<br>-1<br>-1            |
| $^6\text{P}_{3/2}$ | 33352<br>370                              | 33368<br>386                              | -16<br>-16              |                                             | 592<br>611                                | 590<br>606                                | 2<br>5                          |
| $^6\text{I}_{7/2}$ | 35923<br>945<br>968<br>996                | 35934<br>945<br>964<br>979                | -11<br>0<br>4<br>17     | $^6\text{I}_{15/2},$<br>$^6\text{I}_{13/2}$ | 36659<br>668<br>677<br>687                | 36671<br>680<br>683<br>696                | -12<br>-12<br>-6<br>-9          |
| $^6\text{I}_{9/2}$ | 36274<br>285<br>305<br>313<br>332         | 36277<br>286<br>303<br>311<br>323         | -3<br>-1<br>2<br>2<br>9 |                                             | 698<br>701<br>710<br>712<br>717<br>722    | 699<br>707<br>713<br>714<br>715<br>724    | -1<br>-6<br>-3<br>-2<br>2<br>-2 |

## Appendix XI. (cont.)

| SLJ          | Expt. <sup>a</sup>  | Calc. <sup>b</sup>  |     | SLJ          | Expt. <sup>a</sup>  | Calc. <sup>b</sup>  |     |
|--------------|---------------------|---------------------|-----|--------------|---------------------|---------------------|-----|
| State        | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | 0-C | State        | (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) | 0-C |
| $^6I_{15/2}$ | 36731               | 36725               | 6   | $^6G_{7/2}$  | 240                 | 243                 | 3   |
| $^6I_{13/2}$ | 736                 | 729                 | 7   |              | 298                 | 284                 | 14  |
|              | 749                 | 747                 | 2   |              |                     |                     |     |
|              | 760                 | 753                 | 7   | $^6G_{11/2}$ | 49533               | 49545               | -12 |
|              | 769                 | 760                 | 9   | $^6G_{9/2}$  | 560                 | 556                 | 4   |
|              |                     |                     |     | $^6G_{5/2}$  | 604                 | 623                 | -19 |
| $^6D_{9/2}$  | 39667               | 39647               | 20  |              | 638                 | 654                 | -16 |
|              | 686                 | 681                 | 5   |              | 651                 | 661                 | -10 |
|              | 719                 | 709                 | 10  |              | 680                 | 688                 | -8  |
|              | 742                 | 731                 | 11  |              | -                   | 696                 |     |
|              | 758                 | 747                 | 11  |              | -                   | 711                 |     |
|              |                     |                     |     |              | -                   | 731                 |     |
| $^6D_{1/2}$  | -                   | 40620               |     |              | 740                 | 741                 | -1  |
|              |                     |                     |     |              | -                   | 757                 |     |
| $^6D_{7/2}$  | 40734               | 40734               | 0   |              | -                   | 810                 |     |
|              | 740                 | 737                 | 3   |              | 824                 | 823                 | 1   |
|              | 744                 | 741                 | 3   |              | -                   | 860                 |     |
|              | 751                 | 753                 | -2  |              |                     |                     |     |
|              |                     |                     |     | $^6G_{3/2}$  | -                   | 50486               |     |
| $^6D_{3/2}$  | -                   | 40876               |     |              | -                   | 568                 |     |
|              | -                   | 905                 |     |              |                     |                     |     |
|              |                     |                     |     | $^6G_{13/2}$ | -                   | 51310               |     |
| $^6D_{5/2}$  | -                   | 41003               |     |              | -                   | 357                 |     |
|              | -                   | 045                 |     |              | -                   | 382                 |     |
|              | -                   | 059                 |     |              | -                   | 402                 |     |
|              |                     |                     |     |              | -                   | 414                 |     |
| $^6G_{7/2}$  | 49170               | 49160               | 10  |              | -                   | 436                 |     |
|              | 49221               | 49225               | -4  |              | -                   | 483                 |     |

<sup>a</sup>Experimental results from Refs. 68 and 69, cm<sup>-1</sup> vac.

<sup>b</sup>The parameter values used in this calculation are given in Table 4.

Distribution for ANL-88-8Internal:

|                    |                   |
|--------------------|-------------------|
| J. V. Beitz        | L. C. Soderholm   |
| F. A. Caiazzo      | L. M. Stock       |
| W. T. Carnall (40) | C. W. Williams    |
| G. L. Goodman (4)  | ANL Patent Dept.  |
| J. P. Hessler      | ANL Contract File |
| D. J. Lam          | ANL Libraries (2) |
| L. R. Morss        | TIS Files (3)     |

External:

DOE-OSTI, for distribution per (UC-411) (40)  
Manager, Chicago Operations Office, DOE  
L. Brewer, U. California, Berkeley  
J. L. Burnett, DOE, Washington  
R. D. Cowan, Los Alamos National Lab.  
B. R. Judd, Johns Hopkins U.  
V. Kaufman, National Bureau of Standards, Washington  
W. F. Krupke, Lawrence Livermore National Lab.  
W. C. Martin, National Bureau of Standards, Washington  
C. A. Morrison, Harry Diamond Labs.  
K. Rajnak, Kalamazoo College (4)  
R. Rana, College of the Holy Cross (4)  
F. S. Richardson, U. Virginia  
J. S. Sugar, National Bureau of Standards, Washington  
W. Wadt, Los Alamos National Lab.  
M. J. Weber, Lawrence Livermore National Lab.  
J. C. Wright, U. Wisconsin  
W. M. Yen, U. Georgia  
J. P. Young, Oak Ridge National Lab.  
J. Blaise, Laboratoire Aime Cotton, Orsay, France  
J. Fugger, U. Liege, Liege, Belgium

J. Genet, Inst. Physique Nucleaire, Orsay, France  
C. K. Jorgensen, U. Geneva, Switzerland  
B. Kanellakopulos, Kernforschungszentrum, Karlsruhe, Germany  
C. Keller, Kernforschungszentrum, Karlsruhe, Germany  
J. C. Krupa, Inst. Physique Nucleaire, Orsay, France  
D. J. Newman, U. Hong Kong, Hong Kong  
M. F. Reid, U. Hong Kong, Hong Kong