skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The role of secretory granules in radiation-induced dysfunction of rat salivary glands

Abstract

To investigate the possible role of secretory granules in radiation-induced salivary gland dysfunction, rats were pretreated with isoproterenol (5 mg/kg intraperitoneally) to degranulate salivary gland acini. At maximal depletion, salivary glands were locally irradiated with a single dose of 15 Gy of X rays. Parotid and submandibular/sublingual saliva samples were collected before and 1-10 days after irradiation. The lag phase, flow rate, concentrations of potassium and sodium, and amylase secretion were determined. Sham-treated, isoproterenol-treated and irradiated animals provided reference data. In the parotid gland, but not in the submandibular gland, protection against radiation-induced changes in flow rate and composition of saliva occurred after pretreatment with isoproterenol. Combining morphological data from a previous study with data from the current study, it is suggested that improvement of parotid gland function is attributed predominantly to a proliferative stimulus on acinar cells by isoproterenol and not to its degranulation effect. After pretreatment with isoproterenol, an earlier expression of radiation-induced acinar cell damage leading to death was observed, followed by a faster tissue recovery. Thus the proliferative stimulus on acinar cells may accelerate the unmasking of latent lethal damage, resulting in the earlier replacement of dead cells by new, functionally intact cells. 33 refs., 2more » figs.« less

Authors:
; ;  [1];  [2];  [3]
  1. Univ. of Groningen (Netherlands)
  2. Univ. of Groningen (Netherlands)|[Univ. Hospital, Groningen (Netherlands)
  3. Univ. Hospital, Groningen (Netherlands)
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
68620
Resource Type:
Journal Article
Resource Relation:
Journal Name: Radiation Research; Journal Volume: 141; Journal Issue: 2; Other Information: PBD: Feb 1995
Country of Publication:
United States
Language:
English
Subject:
56 BIOLOGY AND MEDICINE, APPLIED STUDIES; SALIVA; FLOW RATE; QUANTITATIVE CHEMICAL ANALYSIS; SALIVARY GLANDS; RADIATION INJURIES; MORPHOLOGICAL CHANGES; RADIOPROTECTIVE SUBSTANCES; RESPONSE MODIFYING FACTORS; AMYLASE; X RADIATION; RATS; SECRETION

Citation Formats

Peter, B., Van Waarde, M.A.W.H., Konings, A.W.T., Vissink, A., and `s-Gravenmade, E.J. The role of secretory granules in radiation-induced dysfunction of rat salivary glands. United States: N. p., 1995. Web. doi:10.2307/3579045.
Peter, B., Van Waarde, M.A.W.H., Konings, A.W.T., Vissink, A., & `s-Gravenmade, E.J. The role of secretory granules in radiation-induced dysfunction of rat salivary glands. United States. doi:10.2307/3579045.
Peter, B., Van Waarde, M.A.W.H., Konings, A.W.T., Vissink, A., and `s-Gravenmade, E.J. 1995. "The role of secretory granules in radiation-induced dysfunction of rat salivary glands". United States. doi:10.2307/3579045.
@article{osti_68620,
title = {The role of secretory granules in radiation-induced dysfunction of rat salivary glands},
author = {Peter, B. and Van Waarde, M.A.W.H. and Konings, A.W.T. and Vissink, A. and `s-Gravenmade, E.J.},
abstractNote = {To investigate the possible role of secretory granules in radiation-induced salivary gland dysfunction, rats were pretreated with isoproterenol (5 mg/kg intraperitoneally) to degranulate salivary gland acini. At maximal depletion, salivary glands were locally irradiated with a single dose of 15 Gy of X rays. Parotid and submandibular/sublingual saliva samples were collected before and 1-10 days after irradiation. The lag phase, flow rate, concentrations of potassium and sodium, and amylase secretion were determined. Sham-treated, isoproterenol-treated and irradiated animals provided reference data. In the parotid gland, but not in the submandibular gland, protection against radiation-induced changes in flow rate and composition of saliva occurred after pretreatment with isoproterenol. Combining morphological data from a previous study with data from the current study, it is suggested that improvement of parotid gland function is attributed predominantly to a proliferative stimulus on acinar cells by isoproterenol and not to its degranulation effect. After pretreatment with isoproterenol, an earlier expression of radiation-induced acinar cell damage leading to death was observed, followed by a faster tissue recovery. Thus the proliferative stimulus on acinar cells may accelerate the unmasking of latent lethal damage, resulting in the earlier replacement of dead cells by new, functionally intact cells. 33 refs., 2 figs.},
doi = {10.2307/3579045},
journal = {Radiation Research},
number = 2,
volume = 141,
place = {United States},
year = 1995,
month = 2
}
  • Purpose: To evaluate the incidence of nodal relapses from carcinomas of the salivary glands among patients with clinically negative necks in an attempt to determine the potential utility of elective neck irradiation (ENI). Methods and Materials: Between 1960 and 2004, 251 patients with clinically N0 carcinomas of the salivary glands were treated with surgery and postoperative radiation therapy. None of the patients had undergone previous neck dissection. Histology was: adenoid cystic (84 patients), mucoepidermoid (60 patients), adenocarcinoma (58 patients), acinic cell (21 patients), undifferentiated (11 patients), carcinoma ex pleomorphic adenoma (7 patients), squamous cell (7 patients), and salivary duct carcinomamore » (3 patients); 131 patients (52%) had ENI. Median follow-up was 62 months (range, 3-267 months). Results: The 5- and 10-year actuarial estimates of nodal relapse were 11% and 13%, respectively. The 10-year actuarial rates of nodal failure were 7%, 5%, 12%, and 16%, for patients with T1, T2, T3, and T4 disease, respectively (p = 0.11). The use of ENI reduced the 10-year nodal failure rate from 26% to 0% (p = 0.0001). The highest crude rates of nodal relapse among those treated without ENI were found in patients with squamous cell carcinoma (67%), undifferentiated carcinoma (50%), adenocarcinoma (34%), and mucoepidermoid carcinoma (29%). There were no nodal failures observed among patients with adenoid cystic or acinic cell histology. Conclusion: ENI effectively prevents nodal relapses and should be used for select patients at high risk for regional failure.« less
  • Purpose: Radiotherapy for head-and-neck cancer causes adverse secondary side effects in the salivary glands and results in diminished quality of life for the patient. A previous in vivo study in parotid salivary glands demonstrated that targeted head-and-neck irradiation resulted in marked increases in phosphorylated p53 (serine{sup 18}) and apoptosis, which was suppressed in transgenic mice expressing a constitutively active mutant of Akt1 (myr-Akt1). Methods and Materials: Transgenic and knockout mouse models were exposed to irradiation, and p53-mediated transcription, apoptosis, and salivary gland dysfunction were analyzed. Results: The proapoptotic p53 target genes PUMA and Bax were induced in parotid salivary glandsmore » of mice at early time points after therapeutic radiation. This dose-dependent induction requires expression of p53 because no radiation-induced expression of PUMA and Bax was observed in p53-/- mice. Radiation also induced apoptosis in the parotid gland in a dose-dependent manner, which was p53 dependent. Furthermore, expression of p53 was required for the acute and chronic loss of salivary function after irradiation. In contrast, apoptosis was not induced in p53-/- mice, and their salivary function was preserved after radiation exposure. Conclusions: Apoptosis in the salivary glands after therapeutic head-and-neck irradiation is mediated by p53 and corresponds to salivary gland dysfunction in vivo.« less
  • Purpose: Patients treated with radiotherapy for head-and-neck cancer invariably suffer its deleterious side effect, xerostomia. Salivary hypofunction ensuing from the irreversible destruction of glands is the most common and debilitating oral complication affecting patients undergoing regional radiotherapy. Given that the current management of xerostomia is palliative and ineffective, efforts are now directed toward preventive measures to preserve gland function. The human homolog of Tousled protein, TLK1B, facilitates chromatin remodeling at DNA repair sites and improves cell survival against ionizing radiation (IR). Therefore, we wanted to determine whether a direct transfer of TLK1B protein to rat salivary glands could protect againstmore » IR-induced salivary hypofunction. Methods: The cell-permeable TAT-TLK1B fusion protein was generated. Rat acinar cell line and rat salivary glands were pretreated with TAT peptide or TAT-TLK1B before IR. The acinar cell survival in vitro and salivary function in vivo were assessed after radiation. Results: We demonstrated that rat acinar cells transduced with TAT-TLK1B were more resistant to radiation (D{sub 0} = 4.13 {+-} 1.0 Gy; {alpha}/{beta} = 0 Gy) compared with cells transduced with the TAT peptide (D{sub 0} = 4.91 {+-} 1.0 Gy; {alpha}/{beta} = 20.2 Gy). Correspondingly, retroductal instillation of TAT-TLK1B in rat submandibular glands better preserved salivary flow after IR (89%) compared with animals pretreated with Opti-MEM or TAT peptide (31% and 39%, respectively; p < 0.01). Conclusions: The results demonstrate that a direct transfer of TLK1B protein to the salivary glands effectively attenuates radiation-mediated gland dysfunction. Prophylactic TLK1B-protein therapy could benefit patients undergoing radiotherapy for head-and-neck cancer.« less
  • Postoperative irradiation reduces the local recurrence rate for malignant salivary gland tumors. Less extensive surgery followed by immediate radiotherapy is possible without decreasing local control; moreover, cosmetic appearance and physiological function are preserved. Local tumor control was achieved in 16 out of 17 patients without gross tumor using a dose of 6,000 rad/6 wk. Combined photon and electron beams give better cosmetic and functional results than either modality alone. Irradiation with greater than or equal to 7,000 rad should be employed in unresectable cases and may effect tumor control.