Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Propagation and absorption of electromagnetic waves in fully relativistic plasmas

Technical Report ·
DOI:https://doi.org/10.2172/6810015· OSTI ID:6810015
The propagation and absorption of electromagnetic waves in a relativistic Maxwellian plasma are investigated by solving the uniform plasma dispersion relation. Both the Hermitian and the anti-Hermitian parts of the plasma conductivity tensor sigma are calculated relativistically. The Bessel functions occurring in sigma are not expanded, and many cyclotron harmonic terms are included at high temperatures. The dispersion relation is solved numerically for perpendicular propagation, k/sub parallel to/ = 0, where the relativistic effects are maximum and are not masked by Doppler broadening, which has been more thoroughly investigated. It is found that relativistic broadening has a substantial effect on wave dispersion, shifting the extraordinary mode right-hand cutoff and the upper hybrid resonance to a higher magnetic field with increasing temperature. Above a critical temperature the cutoff disappears entirely. There is a broad range of temperatures, 20 keV less than or equal to T/sub e/ less than or equal to 500 keV, for which the wave number k/sub perpendicular/ to differs significantly from both the cold plasma value and the vacuum value. This has important implications for ray tracing in relativistic plasmas. Wave damping rates are calculated and compared to results from a previous formulation using the Poynting theorem, in which only the Hermitian part of sigma is calculated relativistically.
Research Organization:
Oak Ridge National Lab., TN (USA)
DOE Contract Number:
AC05-84OR21400
OSTI ID:
6810015
Report Number(s):
ORNL/TM-9075; ON: DE84013627
Country of Publication:
United States
Language:
English