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ABSTRACT

The propagation and absorption of electromagnetic waves in a relativistic
Maxwellian plasma are investigated by solving the uniform plasma dispersion rela-
tion. Both the Hermitian and the anti-Hermitian parts of the plasma conductivity
tensor o are calculated relativistically. The Bessel functions occurring in o are not

~

expanded, and many cyclotron harmonic terms are included at high temperatures.
The dispersion relation is solved numerically for perpendicular propagation, k| = O,
where the relativistic effects are maximum and are not masked by Doppler broaden-
ing, which has been more thoroughly investigated. It is found that relativistic
broadening has a substantial effect on wave dispersion, shifting the extraordinary
mode right-hand cutoff and the upper hybrid resonance to a higher magnetic field
with increasing temperature. Above a critical temperature the cutoff disappears
entirely. There is a broad range of temperatures, 20 keV < T, < 500 keV, for
which the wave number k differs significantly from both the cold plasma value
and the vacuum value. This has important implications for ray tracing in relativistic
plasmas. Wave damping rates are calculated and compared to results from a previ-
ous formulation using the Poynting theorem, in which only the Hermitian part of
g is calculated relativistically.

-



. INTRODUCTION

In investigating electromagnetic wave propagation in very high temperature plas-

mas, T, ~ m,cz, two important modifications to the usual warm plasma wave

theory must be included. First, the relativistic variation of mass with energy
m = ~(Eim, broadens the cyclotron resonances ~(w — kjvj/y — R/v)™'.
Second, finite Larmor radius effects k| p, associated with the large particle energies
cause high-order cyclotron harmonics A2, to make important contributions to the
plasma response even at relatively low wave frequencies w ~ .

In most cases of interest in fusion research, electron temperatures are limited to
Te € 20 keV. In this weakly relativistic regime, vy == 1, Doppler broadening dom-
inates relativistic effects except for very nearly perpendicular propagation, nﬁ <
T,/m,cz and nﬁ €1 - Qf/wz. Also, ki p, generally remains small so that
higher, nonresonant cyclotron harmonics make a negligible contribution to the
plasma response. Now there is quite an extensive literature on electromagnetic
wave propagation in weakly relativistic plasmas. Trubnikov! derived an expression
for the plasma conductivity tensor of a relativistic Maxwellian plasma. This expres-
sion involves infinite integrals over MacDonald functions that are quite difficult to
evaluate numerically. Dnestrovskii et al.2 and especially Shkarofsky3 derived from
Trubnikov's expression a weakly relativistic limit in which cyclotron harmonics are
treated individually and velocity space integrals are represented in terms of the Ff{2)
and Fg{z,n|) functions (see Ref. 3). Since that time a number of alternative formula-
tions of the weakly relativistic problem have appeared,“'s and numerous authors
have used these results to calculate damping rates and investigate heating in
specific devices. For a comprehensive collection of references see Ref. 6.

However, there exists a class of devices in which microwaves are used to pro-
duce very energetic populations, T, ~ m‘,c2 (Ref. 7). For example, in the ELMO

Bumpy Torus-Scale (EBT-S) device electron temperatures of 5600 keV are obtained
routinely, and scaling arguments indicate that temperatures of order 1 MeV are to
be expected in future EBT devices such as the EBT Proof of Principle (EBT-P). In
addition, hot electrons are essential to the operation of thermal barriers in tandem
mirrors. The electron cyclotron resonance heating (ECRH) must establish and main-
tain an average hot electron energy of =450 keV in the thermal barrier and a tem-
perature of =70 keV in the end plug.8 Hot electron temperatures of up to
650 keV are being discussed for the Mirror Advanced Reactor Study (MARS) tan-
dem mirror reactor. At temperatures such as this the weakly relativistic expansion
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vip) = (1 + pPA/mPcAV2 = 1 + p?/2mPc? certainly breaks down. The' cyclo-
tron harmonics are broadened until individual harmonics overlap and are washed
out. Also, high harmonics centribute to the plasma response, up to /| = 40,
depending on 2,/w. Clearly, a fully relativistic treatment is required.

In order to study hot electron ring heating in EBT devices a fully relstivistic wave
damping model was developed for use in the RAYS geometrical optics code.? This
model was based on the Poynting theorem,

- E . (1.1)

Here, s is the arc length along a ray, S = Re[E’ X (n X E)] = Poynting vec-

tor, n = ck/w = real refractive index, £ = wave electric field amplitude, and

ot

-~

index is determined from the ray-tracing code, which uses the cold plasma disper-
sion relation

= Hermitian part of the relativistic conductivity tensor. The real refractive

41|'I
Din) = detiD) = det|(1 — n*)/ + nn + — aXnl| =0, (1.2)

where ¢” = anti-Hermitlan part of the plasma conductivity. Two plasma com-

~

ponents are included in o”?: a cold core plasma component and an annulus com-

ponent, for which ¢ is also assumed to be of the cold form. The electric field

eigenvectors E used in the equation are determined from the cold plasma dispersion

tensor with both components included, D - E = 0. In calculating oH an isotropic

relativistic Maxwellian distribution function is assumed:

12
pn,

m3¢c® 47K,(p)

pf + P}
mzcz

' (1.3)

Fip) = exp[-pl1 +
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where p = m,cz/T, and Ka(p) is the modified Bessel function. An arbitrary
number of cyclotron harmonics can be retained, and all Bessel functions containing
finite Larmor radius effects are included without expansion.

The rings in EBT form at the second harmonic cyclotron resonance and are con-
fined well away from the fundamenta! cyclotron resonance (see Fig. 1 of Ref. 9).
Since the density of the hot electron plasma component is typically a smell fraction
of the cold (T, < 600 eV) core component, it was felt that the real part of k and

the electric field polarization E would be adequately described by the cold plasma

dielectric tensor equation (1.2) near the second harmonic resonance. This pro-
cedure clearly breaks down near the fundamental resonance, because even nonrela-
tivistically there are important finite temperature modifications to k, and E when

w ~ Q. Applications of this model to EBT devices have been presented in
Ref. 9. A Poynting theorem approach similar to this was employed to calculate
opacity to synchrotron radiation in Ref. 10.

In order to justify the validity of our Poynting theorem model for EBT and to
investigate predominantly hot electron plasmas such as those in tandem mirror ther-
mal barriers, a code was developed in which g‘, as well as g_"’, is calculated

relativistically. By solving the relativistic dispersion relation we can compute the
correct values of k,and k; and by solving the dispersion tensor with the relativis-

tic k we obtain accurate polarization eigenvectors. With this code, we have

addrassed a number of questions arising from the relativistic effects: At what tem-
perature do the relativistic modifications become important, and, for a given tem-
perature, how many harmonics must be included in ¢” and ¢"? What effect does

— -

high temperature have on qualitative features of wave propagation such as cutoffs,
resonances, and polarization? From simple arguments one would expect that as the
relativistic electron mass increases, the plasma refraction would decrease. This is
borne out in calculations that show the real part of the wave refractive index n,
changing from the cold plasma value at low temperature to the vacuum value at
sufficiently high temperature. These results indicate when cold plasma ray-tracing
results are likely to be valid.

In this paper we investigate waves in a relativistic Maxwellian plasma described
by Eq. (1.3). We have restricted consideration to perpendicular propagation,
n| = O, in order to emphasize the effect of relativity over the better understood
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effects of Doppler shift and because of the large amount of computer time requirad
to evaluate and solve the dispersion relation. In Sec. il, we derive the relativistic
conductivity tensor in a form suitable for computation and specialize to n| = 0. In
Sec. lll, we give solutions of the dispersion ralation for various magnetic fields and
plasma densities, indicating the behavior of the propagetion constant k, and absorp-
tion rate k; for increasing temperature. In Sac. IV, we compare demping rate calcu-
lations obtained using the full dispersion relation with those using the Poynting
theorem. The resuits are summarized and conclusians discussed in Sec. V.



il. DERIVATION OF THE RELATIVISTIC CONDUCTIVITY TENSOR

Electromagnetic waves in a relativistic plasma are described by the Viasov-
Maxwell system:

, 98
X E= T e
165 4
VXB=——+ "2,
—r Vv + Y, thf) =0, (2.1)

where p = ymv, ¥ = (1 — /A~ V2 = (1 + 2/mPAV?, 6 = charge of

fth particle species, and m; = mass oi i soecies. In this paper, only electrons are
considered so that ¢ = e = —H and m; = m, = m. We investigate plane
waves propagating in a uniform plasma with equilibrium magnetic field B in the 2
direction, B2 = B%, and equilibrium distribution function Av). The perturbed

~

quantities are then of the form

. Kk x—wt)
E(x,t) = Ee ~~ ,
B(x,t) = f k X Elx.0) , (2.2)
Kk x—wt)

fix,v.t) = fvie =~



With this ansutz the linearized Viasov equation becomes

., O of
o — ——p k| F- ~2(p x5 L
ym ~ ~ Y ~ dp
—elE+ 1, x8l- £ <0, (2.3)
~ ymc ~ ~| dp

where {)g = eB’/me < 0 is the nonrelativistic cyclotron frequency. The manipu-
lations necessary to solve Eq. (2.3) for f are quite standard and can be found in
many textbooks. The plasma current can be expressed as

J =ef dPp vip)etkx—wn =g E, (2.4)

which is then used in Maxwell’'s equations to give the dispersion equation

l rl
p-E=|1—n1+nn+ gl E=0 (2.5)

— w =

and the dispersion relation

0.

D(n) = det{D]

-~

For an isotropic equilitzium distribution, F == Hv), the form of the conductivity
tensor is much simplified, *

21re? P daF Milp)

Te o0 oo 3.3

= d, dp | —— (m*c®) .

g jwm ',; p"[) PL v{p) dv },; n,p, Qo
¥ip) — " -1



where
o 2J2 ,___p-L_ I Eg. J P | 1 & 2
n,w / mec {n, w I~ men; W /
o, |* P1p
1] 1L V2 '
Mitorp)=|—My, || =2 |
p 2
— .z 2
Mxy Myz mc] Ji
L d

where the J; are Bessel functions of order / with argument n_ (p  /mclw/Qp) and
the p, integration is taken over the usual Landau contour. For notational conveni-
ence we measure momentum in units of mc (that is, p = mcp’); we introduce a
cyclotron frequency normalized to the wave frequency Q= Iﬂo/wl; and we
renumber the index / such that positive harmonics are resonant for electrons,
| = —/'. With these changes, when we drop the primes on p and /, Eq. (2.6)

becomes
216 (oo 00 1 oF X g’
o = — dp, p dpm3c3——- =
= Jom ‘L L PL f—oo * Y oY l—§oo Y T NP T 19
(2.7)
where now
{ -t 2 b —
Blpg i Lo o
n, ny ny
Ml =|—M, l-":_zL‘-’I'2 ipzp_LJIJ:L . (2.8)
M,, M, : Pzz J?

The argument of the Bessel functions is b = n p; /@ = 0. To get Eq. (2.8) we
have used o = —[K and properties of Bessel functions J—f2 = (—1YJ2),
J_[d = (=2, J—2 = (—1)y2, and J(—2 = (—1Y" 2.



To treat the singular resonance denominator in Eq. (2.7) we assume that w s
real and that n, has a small positive imaginary part. Then the Plemelj relation gives

i ( 1 _
— — P —| — iwdly — n,p, — If)
Y — np, — I ly—nzp,—lﬂ e
so that
27262 1 OF _
o= =S L L [T, dpe m3e - T My By = myp, — Y
{2.9)
2mre? 1 OF M
T =~
of =i Pl dpy py [ do, mic® — = =,
= wm Y Y v — np, — IQ

(2.10)

where P indicates a Cauchy principal value. It has proved convenient in the numeri-
cal computations to transform the integrals over p,, p) to integrals over p =

(pﬁ_ + p,z)’/2 and 4 = cos X, where x is the polar angle in velocity space, that
is, p, = puand p. = pi1 — u?)"2. When n, is real, o' and o4 are, respec-

tively, Hermitian and anti-Hermitian matrices.
Finally, we explicitly introduce the relativistic Muxwellian distribution function

Fly) = Do P__ g=p (2.11)
m3c® 4mKy(p) ’

where n, = hot electron density, Ka(p) = modified Bessel function, and

p = mc?/T is an inverse temperature variable. At small energy (large p),

Eq. (2.11) reduces to a nonrelativistic Maxwellian with temperature given by T =
mczlp At higher energy, expressing p in terms of the kinetic temperature is some-
what more complicated. With the distribution in Eq. (2.11) the average particle
kinetic energy {(e) can be expressed as
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K 4(p)
=L 3 2, — = mc2| 2 + ! ,
(€) Py [ d® mcty — 1) Fly) = me lp Kz(p)] (2

Using the asymptotic expansions of K 2 for large p, \

2 .
e[| A
K,(p) 2p9 l 8p /

gives the usual nonrelativistic result,

() =me¥(y — 1) ~ % T for T/m? <1, (2

while in the ultrarelativistic limit, p = mcA/T << 1, the power series expan
n ~ 1/2I(n}3/2)", gives

10

() =6T— 1~ —2— [?- T for T/me?>>1 . (2

In the intermediate range p = 1, we find (¢) = 2.3T = 3/2(1.67) so that {
" thirds of the average particle energy when T == 500 keV is about 800 keV.

The final form for the conductivity tensor used in all computations in this p
is then

2 w? 2

H __ P pe fee) P r _ _ e
g’ = — dp du M, (p,p)oly pu— I , 2
= 8K2(p) W ?fo v f—1 =/ 2

M (p.u) /f

A_ ! p__ __pi P ~pY $
o= — —— dp e du —~ .
= 7 8K,(p) ? f Y f"‘ Y — npp— I}

(2
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A. Computation of o

The presence of the & function permits one of the integrals in in Eq. (2.16) to
be done immediately. It has proved convenient to do the p integral analytically and
the u integral numerically. Contributions to the p integral come from roots of the
argument of the & function, fip), where

f(p) = (1 + p)1/2 — N up — I, (2.17)

Roots of tﬁis function can be visualized as the points of intersection of the
_. hyperbola y = (1 + p2)” 2 with the line y = /0 + (nu)p; see Fig. 1. Solving
" fip) = O gives two roots:

Qn,u = (P02 + n2u? — 1)1~

1- n,z,u2

py= (2.18)

ORNL-DWG B4C-20456 FED

/7

Y = (1 + p2)1/2 /

/

-p

Fig. 1. Location of resonant values of momentum.
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However, one or both solutions of Eq. (2.18) may be superfluous. A glance at
Fig. 1 shows that we require three additional conditions:

1. p must be real, so the discriminant A = 2(12 + n,zuz — 120,
2. p must be positive, 8o the root is within the right side of the hyperboia,
3. the root is on the top branch of the hyperbola, so I} + nup > 0.

it is tedious to sort out these conditions algebraically, but the results can be
easily understood with the help of Fig. 1. We group the results for varying nu in
four cases according to the relative cyclotron harmonic number 13 (i.e., the y inter-
cept of the line N+ (n,u)p].

Case 1.

there are no valid roots for nu& 1 ,

<0,
p— is a-valid root for nu>1 .

Since lul £ 1 this implies that there are no resonant particles for zero or negative
harmonics unless n,> 1. That is, anomalous dispersion, / < O, and inverse

Cherenkov radiation, / = O, are possible only if the parallel wave phase velocity is
less than c. '

Case 2.

there are no valid roots for nu € (M), = (1 — RFRYV2
If 0</T<1 ,< there are 2 roots for (M), SNuS1T ,
p- is a valid root for nu>1 .

The value (n.u),,, defines the point of tangency between the hyperbola and the
line; that is, A=Oand py = p_.
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Case 3.

p+ =0 is a valid root for nu<0 ,
if 1=,
p— =0 end py >0 are valid roots for O€nu<1 .

This is the case of exact cyclotron harmonic resonance. \We see that there is
always a root at p = O; however, this root makes no contribution to the integral
since the argument of the Bessel functions vanishes.

Case 4.

p4+ is a valid root for nu<1,
it >,

there are no valid roots for nu=1 .

Inspection of Fig. 1 also reveals the characteristic asymmetry with respect to {2
of the relativistic cyclotron absorption profile. Consider n, = O, in which case the
moving line is horizontal, y = I for all u. Then there are no intersecdons
(resonant particles) below the harmonic (I < 1), but there is an intersection at
increasing p as IQ increases above 1. The increase of p4+ with IQ causes the

strength of the resonance to be weighted by J,z(n _,_ST\/ 1 —uzp+) for small p,
and by the distribution function exp{—p(1 + p.zg.)"’] at large p_.. This produces
the absorption line profile peaked above the cyclotron harmonic. For nonzero n, the
moving line slopes as u ranges from —1 £ u < 1, allowing some resonance
below the cyclotron harmonic <1, i > 0) and permitting resonance with lower
energy particles above the cyclotron harmonic (/1 > 1, u <0). The Doppler shift
associated with n, therefore tends to wash out the asymmetry of the relativistic
shape. In the nonrelstivistic limit one considers only the extreme left edge of Fig. 1
such that the hyperbola appears as the horizontal line y = 1. Then the absorption
line shape is symmetric and determined entirely by the slope of the line
y = I + (n,u)p, that is, Doppler shift.
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Returning now to the evaluation of o we perform the p integration in

Eq. (2.15) including the contribution of the roots of fip), Eq. (2.17), and obtain

_o* I P —pvba) Moy b
H - —= d TPYPsl : 2.19
4 8K3lp) w ,_wa "E 'r(p,_)a [F(p )] (2.19)

Using Eq. (2.17) we obtain f'{p) = (p — yn,u)/y. Since fip) = O implies v ==
nup + /2, this can be written f'(p) = [(1 — n,zuz)pt - Iﬁ?v,p]/y(pt). Using
Eq. (2.18) gives

(P02 + n2u2 — 1)12 = 4 (2.20)

flog)= ¥ip +) vip )

The expression for ¢/ in Eq. (2.19) simplifies to

w

H P pe du S —pYlps)

o= — 113 a ’
=  8Kyp) w ,_E_wf ry (P2 + nZu? — 1)\ 2

(2.21)

where the range of integration over u and the sum over =+ are restricted by the
existence of valid roots py 53 diecussed in the four cases atove.

Case 1: M < 0. There is no contribution unless n,> 1, in which case
p- is included and the range of integration is 1/n, < u < 1.

Case 2: 0 < M) < 1. Both p, are included and the range of integration
i8 Umin € # £ 1. It will be seen that the integrand in Eq. (2.21) has a singularity
at 4 = un, associated with the degeneracy of p+. The singularity is integrable,
however, by making the change of variable

- - P12 cos 0 cos f = nznz
g [n,| ' 1— P2

4
.

(2.22)
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Then for values of / such that 0 < pnn = (1 — ATV 2/p, < 1, the contribu-
tion to o/ is

~

2 @l
p pe bmes 19 My [P 1 2(0) (2.23)
8K2(p) ) 2 I"lll f Ep;t N[p:t uion
where
., nzz 1/2
Omex = CO8 :—lz—ﬂ_ﬂ—

if n,> 1, there is an additional contribution from p_ over the range 1/n, < pu
<1

Case 3: M = 1. Exactly at cyclotron resonance the denominator in
Eq. (2.21) vanishes at u = 0 (i.e., #yn = 0) and the transformation equation,
Eq. (2.22), fails. However, the integrand is not actually singular since p.(u = 0)
vanishes when /& = 1. In particular, we have p, = (n,u * |n,u|M1 - nfuz).
Since p_ <0, only p, contributes for u =0 and we obtain for this particular /
value

—vlp4)

M,(p+ e

2™* Yoo I (2.24)

8K2(p) w o

nZu)

Case 4: Al > 1. Only p4+ contributes and the range of integration is '
-1 €usx<1.

A computer code has been written to evaluate ¢ using Egs. (2.21), (2.23),

and (2.24). This code has been used with the Poynting theorem, Eq. (1.1), to
investigate wave absorption by the hot electron rings in EBT devices. Results of
these studies have been reported in Ref. 9.
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in the following sections the full dispersion relation is solved for the special case
n,=0. When n,=0, we have p, = (P22 — 1)'2, independent of u, and
the expression for E_H' Eq. (2.21), is greatly simplified:

2 2

w [oe]
He L 7P S (22— )1 2g=oill | () (2.25)
Z BKy(p) w ,_2,;” <P+
where
1
Lipr= [ duM o . (2.26)

Figure 2 shows the relative contribution of the various cyclotron harmonics to a

typical element of _g_”, oz,, as a function of {I = |Qo/w| for T = 40 keV,

n,= 0.0, and n; = 1.0. One can see considerable overlap in the higher harmon-
ics, /2 2, even though n, = 0 and only relativistic line broadening is present.
The absorption rate k; tends to be proportional to the sum over / of afx(l), so the

temperature dependence of the total ¢ is indicated by the plots of k; [Fig. 4(b)
below and Fig. 4 of Ref. 9].

B. Computation of o4
@
Computation of g2 is much more cumbersome and much more costly in com-

puter time than o

~—
=

cally. It has proved convenient to perform the u integral in Eq. (2.16) first,

since two velocity space integrals must be performed numeri-

i pz wga ) p? - o)
A= zf dp S ° o)) (p) , (2.27)
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a ¥y (relative units)
1
N
)
anm—

Fig. 2. Contributions of various cyclotron harmonics to olf. Here Te = 40 keV,

n,-O,n_L-LO.

where
M, (p.u)
1 1 =
! - P ' 2.28
=:(p)-' np F‘f_1f_1 2 — Ho (2.28)
so ™ —— [ylpi — ] . (2.29)
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There are three cases depending on the value of ug.
Case 1: |uo| > 1. The u integral is regular.

Case 2: I#o| = 1. The u integrand has a singularity at the upper or lower
limit, This singularity is not integrable for / = O although the integral over p does
still converge.

Case 3: |ugl<1. The p integral is Cauchy.

Again, there is considerable simplification if n, = 0. Then the resonant denomi-

nator is independent of u, and ¢4 is

I (p) , (2.30)

where /;(p) was defined in Eq. (2.26). . Again, one must consider three separate

cases depending on /§ {refer again to Fig. 1).

Case 1: < 1. The p integrand is regular, and there are no resonant par-
ticles.

Case 2: /2= 1. The pintegrand has an integrable singularity at p = O.

Case 3: /> 1. The integral is Cauchy.

In case 2, we make a change of variable to x = /4 — 1, which transforms
the integral in Eq. (2.30) to

2 oodx /2 + x2 e—p(1+x2)I p(X)] , IQ—=1 . (2.31)
0 ='[

In case 3, we divide the range of integration into two parts: a symmetric region
about the singularity (y = IQ) and a part extending to infinity. Introducing a vari-
able x such that y(x) = IR+ (19— 1)x, integral in Eq. (2.30) becomes

-pY
pf o BB gmeri 4 [ ayB2— 1 po) . (2.:32)

—1 2/A1—1 vy — IQ
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In the computations below with the relativistic dispersion relation, ¢ is calculated

-~

from Eqgs. (2.30)-(2.32),

Figure 3(a) shows the functional dependence of the / = 1 term (i.e., of the
fundamental resonant term) of d;‘x on / and & for fixed n 1 =10and n,=0.
Note that n; = 1.0 is not the solution of the dispersion relation. At low tempera-
ture a,‘,‘x follows almost exactly the cold plasma resuilt,

2
pe

20w — |Q,])

w

ol = 1) =

The singularity at 2 = 1 dominates the wave propagation, absorption, and polariza-
tion in nonrelativistic theory, particularly for the extraordinary mode. We see in
Fig. 3(a) that the resonance is washed out at high temperature and for T 2= mc?
the / = 1 contribution converges to zero at all Q. This does not imply that i'.A

itself is negligible at this temperature since higher / values must be included. Figure
3(b) shows a4(Q) total, including harmonics —9 </<20. At T =280 keV this

was necessary to achieve 1% accuracy in ah.
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lll. SOLUTION OF THE DISPERSION RELATION

In the limit nj = O the dispersion equation simplifies to

[exx EXY o EX
—éyy ew—ni 0 El=0. (3.1)
0 0 €z n?L - |E: -

where € = | + (4mi/w) (¢4 + g_“). Also, the dispersion relation factors into

oidinary and extraordinary mode branches,

ni — €,(n ) = 0:ordinary mode , (3.2)

, €N e, (1) — €2fn )
nj —

= 0 : extraordinary mode . (3.3)
6xx(" J_) :

These equations are solved numerically by standard root finding techniques.

Of course, the ¢;; are transcendental functions of n; so the dispersion rela-
tions have in general an infinite number of ‘roots, including the electromagnetic ordi-
nary and extraordinary modes as well as the Bernstein warm plasma modes. For
simplicity, we first consider weakly damped modes (n; << n,) that go continuously
into the electromagnetic waves at low temperature. This is accomplished by
approximating g(n 1r Fing ) = _g_(n 1.7 and then solving Eqs. (3.2) and (3.3) for

complex n , initializing the root finder to the appropriate cold plasma root. Figure
4 shows extraordinary mode k, and k; vs magnetic field strength (£2,/w) for various
values of T,. For these calculations the wave frequency was w/2r = 138 GHz and
the density was given by wf,,/wz = 0.3 (ie, n, = 1.2 X 102 cm™3). 1t

should be mentioned that only the dimensionless quantities $2,/w, wf,,/wz, and
T,/mc.'2 enter the dispersion relation for the refractive index n. The actual wave

-~

frequency therefore only enters as a scale factor on k = wn/c.
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At low temperature (T, = 0.64 keV), k, follows almost exactly the Appleton-
Hartree solution except for a slight wiggle near the second harmonic (,/w = 0.6)
and a shoulder near the fundamental (Qs/w = 1). In particular, the right-hand
cutoff (denoted Cq g4 in the figure) and the upper hybrid resonance (denoted Ap 4g)
are at the correct cold plasma values. In Fig. 4(b) one sees a sharp second har-
monic absorption line and invisibly small absorption at the fundamental. Recall that
nonrelativistically, extraordinary mode, fundamental resonance absorption vanishes
for nj = 0. At higher temperature, T, = 23 keV, one sees much larger and
broader structure in k, at the second harmonic and structure at the third harmonic.
In k; there are now “road peaks at the third harmonic and fundamental, whereas the
second harmonic peak is reduced in size but greatly broadened. The most striking
feature, however, is that the right-hand cutoff C,3 and the upper hybrid resonance
Ro3 have moved to higher magnetic field. Also, the maximum value of k, at the
resonance is only 7 cm™ ", which is about a factor of 2 above the free space
value, kg = 3.77 em”'. At 77 keV the right-hand cutoff C;5 and the upper
hybrid resonance R,; have again moved to higher field but the cutoff has almost
overtaken the resonance. There is virtually no maximum in k, that would be associ-
ated with an upper hybrid resonance. Also note the general overlap of se~ond and
higher harmonics due to resonance broadening. At still higher temperature, T, =
164 keV, the resonance/cutoff pair has disappeared aitogether, leaving the merest
vestige of cyclotron harmonic structure. The damping is relatively weak and nearly
independent of magnetic field.

The interesting temperature dependence of the right-hand cutoff can be studied
analytically using the dispersion relation. From Egs. (3.2) and (3.3) we see that the
condition for a true cutoff (k, = k; = 0) is

€,.{n | = 0) = O: ordinary mode |,
6xln L =0y n) =0)— cfy(n | = 0) = 0: extraordinary mode . (3.4)

In the limit n; — O for Eq. (2.27) the only nonzero terms are the / = X1 terms
of Oxx: Oxy Oy and the | = O term of 0. In particular, when Q<10 = o0,

and we obtain for ¢

(3.5)
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2 2 4. —y4
_wg [o'e) T - Y
=0 ”——ﬂ—fo d

Exy w? 3Kj(p) ~vip? + 1 — Q3 (3.6
2 2 4
Yoo p o, P -
= ] - — — dp—e~ P7 , (3.7
e R T L

Equation (3.6) can be solved immediately to give the density of the ordinary mod
cutoff,

“ml el (3.8
wz 2 (oo P4 - .}
cutof f p f dp —e Py
0 Y

The right-hand side of Eq. (3.8) is an increasing function of temperature, which i
the nonrelativistic limit (p. >> 1) approaches unity.

Equations (3.5) and (3.6) can also be used to derive an expression for th
magnetic fieid of the right-hand cutoff. However, the integrals cannot be performe
analytically, so in Fig. 6 we have plotied (S2/w)cyo VS temperature for variot
densities, Qge/wz. The curves terminate when Q,/w = 1. This is because _g""

-

nonzero for Q,/w > 1, and the cutoff condition becomes complex. Both the re
and imaginary parts of Eq. (3.4) cannot be made to vanish simultaneously for re
Q,/w. Thus in Fig. 4 and in the figures to follow, as increasing temperatul
attempts to push (Q,/w)cu0fr beyond unity, the cutoff disappears altogether. No
that the location of the cutoff in Fig. 4 is accurately given by Eqs. (3.4)-(3.6).

The calculations above show in a simple way the trends with increasing ten
perature. However, because n; was neglected in g, the results are not accura

near the cutoff kK, — O in the evanescent region nor for the T, == 77 keV cat
near the fundamental, where the damping is strong. We remedy this now by allov
ing a complex argument for o. This allows us to study heavily damped ar

evanescent waves and introduces the Bernstein mode roots. We will see that ti
coupling between the extraordinary and Bernstein modes is quite interesting at
complicated, particularly in the region of magnetic field strength between the co
plasma extraordinary mode cutoff, Qg/w = 1 — wg,/wz, and the fundament
cyclotron resonance.
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The behavior of extraordinary and Bernstein mode roots has been investigated
rather thoroughly in the weakly relativistic limit near the second harmonic
resonance.'"12 In that work a critical density was identified that for fixed tempera-
ture separates two regimes with different connection properties of the mode across
the second harmonic [see, for example, Eq. (10) and following material of Ref. 11].
We consider first a case corresponding to the low density regime of the weakly
relativistic theory.

Figure 6 shows k, (solid lines) and k; (dashed lines) of the extraordinary and
Bernstein modes as functions of Q,/w for temperatures of (a) 16 keV, (b) 62 keV,
(c) 77 keV, and (d) 185 keV. The wave frequency is w = 27 X 18 GHz, and
the plasma density is given by w’z,,/w2 = 0.2. For T, = 16 keV the extraordi-

nary mode is continuous through the second harmonic resonance with a perturba-
tion near {,/w = 0.5 due to the intersection of the Bernstein mode. The location
of the right-hand cutoff has been displaced by relativistic effects from the cold
plasma value of Q,/w = 0.7 up to 0.87, while the maximum of k, on the extraor-
dinary mode branch occurs at {},/w = 0.96 rather than 0.84, which is the upper
hybrid resonance. This plot is comparable to Fig. 1 of Ref. 11 (note, however,
that the ordinate in that plot is w/Q, rather than f2,/w, and it does not show the
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Bernstein mode). As the temperature is increased to 62 keV [Fig. 8(b)], the right-
hand cutoff moves to §,/w = 0.98 and virtually all peaking in k, that would be
assoclated with the upper hybrid is gone. Additional structure is seen in the Bern-
stein mode near the second harmonic resonance. At higher temperature the cutoff
attempts to move sbove ,/w = 1.0 and the resonance/cutoff pair effectively
annihilate each other. According to Fig. 6 the critical temperature for w,f,/w2 =

0.2 ia 82 keV. In Fig. 6(c), T, = 77 keV, there is no cutoff at any magnetic field
for the extraordinary mode, although damping is quite strong near the fundamental.
At very high temperature, 7, = 186 keV in Fig. 6(d), k, for the extraordinary
mode i8 almost independent of magnetic field with only a slight perturbation due to.
the presence of the Bernstein mode. The damping is weak and almost all harmonic
structure is washed out.

in Fig. 6(a and b) we have not plotted the Bernstein mode root for & > 1.
The Hermitian part of the conductivity is not an analytic function of 2, at 0 =1
because of the factor p+ = (P12 — 1)V2 in Eq. (2.24). At these intermediate
temperatures the magnitude of kj for the Bernstein mode is large and the / = 1
contribution to ¢ turns on, very rapidly making the roots difficult to follow numeri-
cally. The Bernstein mode itself is strongly damped here and of little practical
importance. It is interesting, however, to see how this mode influences the extraor-
dinary mode root near the fundamental resonance. We will defer this topic for
future publications.

in the weakly relativistic theory, as the density is increased, a regime is
reached in which the Bernstein mode on the low magnetic field side joins smoothly
onto the extraordinary mode above the second harmonic resonance. Figure 7
shows such a high density regime case, w:,/w2 = 0.3, for temperatures of (a) 16

keV, (b) 62 keV, (c) 108 keV, and (d) 185 keV. In Fig. 7(a), T, = 16 keV, we
see that the extraordinary mode from the low field side joins a heavily damped
mode at the second harmonic resonance (denoted AB in the figure). As previously
mentioned, the Bernstein mode connects to the extraordinary mode branch above
the second harmonic (point C), With increasing }¢/w the extraordinary mode con-
tinues to the cutoff (accurately predicted by Fig. 5) and joins to the evanescent
extraordinary mode point D coming from the high field side of the fundamental.
The extraordinary mode therefore exists as two disconnected branches with a break
at AC. Now, as the temperature is increaser), k, increases for the heavily damped
mode (AB), approaching the Bernstein mode at €},/w = 0.5 and approaching the
evanescent extraordinary mode near the right-hand cutoff. In Fig. 7(b), T, =
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62 keV, the heavily damped mode has joined the Bernstein mode, while the
extraordinary mode on the low field side is continuous with the branch of the
extraordinary mode that goes to the cutoff (point D). That is, point A now
coincides with point C. The weakly damped mode joins smoothly with the extraor-
dinary mode coming from the high field side at point B. Again the extraordinary
mode is in two disconnected branches, but this time the break is at BD. As the
temperature is increased to 108 keV, Fig. 7(c), the cutoff disappears and the
extraordinary mode again becomes a single continuous branch. The Bernstein mode
makes only a minor perturbation at the second harmonic but strongly influences the
extraordinary mode near the fundamental. At 7, = 185 keV, Fig. 7(d), the
extraordinary mode is smooth and weakly damped throughout.

Solution of Eq. (3.2) for the ordinary mode can be carried out in the same
manner. Of primary interest here is the dependence of k on density. Figure 8
shows k, vs wg,s,/w2 for temperatures of 0.9 keV, 24 kev, and 78 keV. At low
temperatures k, follows the cold plasma results, 1 — wgolwz, quite closely.
Increasing temperature increases k, at fixed mf,,s,/w2 toward the vacuum value kg =
3.77 cm™ ! and also increases the density of the cutoff. Again the cutoff density is
accurately given by Eq. (3.8).

It is also of interest to examine the effects of high temperature on the electric
field polarization eigenvectors, that is, the solution of Eq. (3.1). In cold plasma
theory the singularity of g_A at w = (), completely “shields out” the right circularly

polarized component of the field, E—- = E; — iE, at the fundamental resonance. If
nj # 0, even nonrelativistically finite temperature effects resolve the singularity and
allow a small component of E— at the fundamental resonance. This small correc-
tion to E is quite important for calculation of cyclotron damping at the fundamental

using the Poynting theorem (see, for example, Ref. 13) although away from the
fundamental the cold plasma eigenvectors can be used. Figure 9 shows the magni-
tude of the E— component for the extraordinary mode vs {,/w for temperature
T = 2.5 keV, 23 keV, and 64 keV. The wave frequency is 18 GHz and the
plasma density is w;‘;e/wz = (0.3. The total eigenvector has been normalized such

that E°- E = 1. We see the dip in IE..| at Q,/w = 1 for the low temperatures,

but this is completely gone at higher temperature.
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IV. COMPARISON WITH POYNTING THEOREM CALCULATIONS

One of our main objectives has been to determine how well the Poynting
theorem model [Eq. (1)] using cold plasma values of k, and E agrees with the

solutions of the full dispersion relation. Figure 10 compares k; obtained from the
dispersion relation (solid curve) with k; obtained from the Poynting theorem (dashed
curve) for temperatures of (a) 52 keV, (b) 185 keV, and (c) 1 MeV. The wave
frequency is again 18 GHz, and the plasma density is 1.2 X 10'2 ¢cm™2

(o.a,z,‘,/o.’2 = (0.3). Since the waves are relatively weakly damped, for ease in com-
putations at the very high temperatures we have employed the version of the code
using real arguments for the Bessel function (this code was used to produce Fig. 4).
It is clear that the Poynting model must fail at the cold plasma cutoff (Q,/w = 0.7
in Fig. 10). Since the cold plasma k, vanishes there, all the Bessel functions in z"

—
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are zero, resulting in zero absorption. The Poynting theorem results are not mean-
ingful between the cutoff and fundamental resonance because the cold plasma root
is purely evanescent. On the other hand, with the full dispersion relation, neither k,
nor k; vanishes at the cold plasma cutoff. Similarly, the Poynting model must fail
near ,/w = 1 since in cold plasma theory E— is zero at the fundamental,
whereas relativistically E_IH is of order one. From Fig. 10 we see that at the
second and higher harmonics (i.e., Q,/w < 0.5) the Poynting theorem calcu .tion is
reasonably accurate up to 185 keV. Notice that the absorption predicted"by the
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Poynting theorem is nonzero at Q4/w = 1, This is the contribution due to the left
circularly polarized component, E+, which becomes significant at high temperature.
The justification for using the Poynting theorem code for EBT calculations was
that the hot plasma in EBT is coexistent with a much cooler component with higher
density [Tooy ~ 300 eV, Ny ~ (2-10)np,]. It was considered that k, and £

~

would be dominated by the cold component, which would render the Poynting
theorem formulation valid for EBT even in the range 0.56-1 MeV. We have there-
fore investigated the effect of adding a cold component in both formulations. In
Fig. 11 we compare absorption calculations in whirh the total plasma density is
1.2 X 10'2 ¢m™3 (m‘:";‘,/u.a2 = 0.3) with the hot component (T, = 502 keV)
representing all of the density, Fig. 11(a); only half of the density [(w%a/wz)hat =
0.16], Fig. 11(b); and one-sixth of the density [(wga/wz)ha, = 0.06], Fig. 11(c).

The remainder of the plasma is described by the purely anti-Hermitian, cold
plasma conductivity. One can see that the agreement is significantly better than for
the comparable case of purely hot plasma [Fig. 11(a)]. The presence of the cold
plasma component effectively shields out the £E— component of the wave field and
results in reduced absorption and much improved agreement between models at the
fundamental resonance. It is interesting that the presence of the cold plasma
component reintroduces the right-hand cutoff in the calculations with the full disper-
sion relation, although the hot plasma component shifts the cutoff to a higher
magnetic field than the cold plasma value. We have not plotted k, here, but the
zeros in k; above the second harmonic in Fig. 11 are in fact associated with the
cutoff.
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V. CONCLUSIONS

We have found that for nj = 0 and T, above a few tens of kilo-electron-volts
both the wave number, k, (= c?), and damping rate, k; (=¢"), are significantly

modified by relativistic mass shift and large k | p,. Above about 40 keV, cyclotron
harmonic overlap becomes important and at least three harmonics must be included.
To obtain 1% accuracy in calculating o” at 280 keV [Fig. 3(b)] it was necessary to
include harmonics /| = —9to/ = 20. .
As one would expect intuitively, the relativistic mass increase associated \ ith
increasing T, reduces the dispersive property of the plasma. Both the right-hand
cutoff and the upper hybrid resonance move to higher magnetic field and the
separation between them decreases. At sufficiently high temperature (see Fig. 5)
the resonance and cutoff disappear altogetﬁer. Above this temperature the extraor-
dinary mode has no evanescent region, k, = 0, at any magnetic field. Above
about 20 keV there are significant deviations in k, from the cold plasma value, Of
course, the discrepancy is most pronounced near the cutoff and upper hybrid reso-
nance, but large differences occur throughout the range 0.5 < Q,/w < 1.5. As T,
increases, the cyclotron harmonic structure washes out due to resonance overlap
and the magnitude of EA decreases. Thus for T, > m,cz, k, approaches the

vacuum value, kK, = w/c.

These results have interesting consequences for ray tracing. Over most of
parameter space the cold plasma rays should be valid when T, < 10-20 keV.
Also, for T, > 500 keV, plasma dispersion can be neglected and straight-line
vacuum trajectories used. There is, however, an uncumfortable range, 20 keV <
To < 500 keV, in which electromagnetic waves can be weakly damped, but the
ray trajectories are not well described by either cold plasma theory or vacuum solu-
tions, An additional complication comes in through ghe temperature dependence of
k,, which may result in ray refraction due to temperature gradients.

For temperatures less than about 20 keV, our calculations are in relatively
good agreement with the weakly relativistic expansion of SI'\karofsky.3 Much above
this temperature resonance overlap becomes important, the expansion of vy breaks
down, and the small Lan..or radius expansion of the Bessel function is not valid.
From the standpoint of heating hot electron plasmas, one of the most important
features we have observed is that for fixed Q,/w the absorption rate, k; peaks at a
certain finite te'mperature, then decreases above this point. At the second harmonic
resonance, the peak absorption occurs at T, = 75 keV. For T, > 500 keV, k;is
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approximately proportional to 7-9—3/2, which is the asymptotic behavior of the nor-
malization factor of the relativistic Maxwellian, /K, (p). This effect can be under-
stood physically as follows: cyclotron harmonic absorption is a finite Larmor radius
effect, k; ~ (J? (k1,v1 /), so that at low temperature k; increases with (v, ).
However, at high temperatures the distribution is widely spread out in velocity
space so that the density of particles resonant with a wave of fixed (k, w)

decreases as temperature increases. As a practical matter, our calculations have
shown that due to higher ring temperature in EBT-S (7., ~ 400-500 keV) com-
pared to EBT-l (Tys, ~ 150-200 keV), less power is actually deposited in EBT-S
rings despite the much higher ring stored energy (typically 30-40 J compared to
5-10 J in EBT-I).. In advanced devices using still higher ring temperatures (T, ~
1 MeV projected for the EBT-P device), methods of efficiently coupling power to
the hot electrons are an important consideration.? These resuits also point out the
sensitivity of absorption to details of the distribution function, particularly deviations
from a simple Maxwellian.

We are encouraged by the agreement between calculations with the full disper-
sion relation and the Poynting theorem using cold plasma k, and E. In cir-

cumstances for which the relativistic plasma component is embedded in a nonrela-
tivistic component of equal or higher density, the Poynting theorem formulation '
gives reasonably accurate results to well above' 500 keV. This is much less
demanding computationally than solving the full dispersion relation. We feel, there-
fore, that within the limits of WKB theory, our previous calculations of EBT ring
absorption are correct. There are, of course, uncertainties as to whether any
WKB-like theory can be applied to the EBT rings, where the perpendicular magneiic
field scale length is not much greater than p and where particles with vj ~ ¢ see
variations in magnetic field strength in a few gyroperiods by parallel flow.

Figures 6 and 7 demonstrate the complicated interaction between the extraor-
dinary mode and the Bernstein mode at high temperature. Since both modes tend
to be heavily damped near the coupling point it is not clear that these couplings are
important for practical applications at relativistic temperatures. In any case, accu-
rate computation of mode conversion requires a full wave treatment, whictP"'n this
large k) p, regime would be extremely difficult. ’

Finally, we should comment on the computational requirements. Some effort
has been expended in making the computation of Bessel functions and the' numerical
integrations run efficiently. Despite this effort, the code is quite expensive to run.
This has discouraged us from investigating more general distribution functions or a
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wider parameter space (e.g., nj # O). There are, »wever, other formulations for
the relativistic conductivity tensor that may have computational advantages over the
cyclotron harmonic expansion used here. In particular, there is Trubnikov’'s original
formulation mentioned in the introduction. Also, a formulation by Weitzner'? exists

in which the sum over cyclotron harmonics is replaced by an integral over the order
of a combination of Bessel functions.
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