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ABSTRACT 

The propagation and absorption of electromagnetic waves in a relativistic 
Maxwellian plasma are investigated by solving the uniform plasma dispersion rela-
tion. Both the hermitian and the anti-Hermitian parts of the plasma conductivity 
tensor a are calculated relativistically. The Bessel functions occurring in a are not 

expanded, and many cyclotron harmonic terms are included at high temperatures. 
The dispersion relation is solved numerically for perpendicular propagation, = 0, 
where the relativistic effects are maximum and are not masked by Doppler broaden-
ing, which has been more thoroughly investigated. It is found that relativistic 
broadening has a substantial effect on wave dispersion, shifting the extraordinary 
mode right-hand cutoff and the upper hybrid resonance to a higher magnetic field 
with increasing temperature. Above a critical temperature the cutoff disappears 
entirely. There is a broad range of temperatures, 20 keV < Te ^ 500 keV, for 
which the wave number k± differs significantly from both the cold plasma value 
and the vacuum value. This has important implications for ray tracing in relativistic 
plasmas. Wave damping rates are calculated and compared to results from a previ-
ous formulation using the Poynting theorem, in which only the Hermitian part of 
a is calculated relativistically. 

v 



I. INTRODUCTION 

In investigating electromagnetic wave propagation in very high temperature plas-
mas, Tg — mec2, two important modifications to the usual warm plasma wave 
theory must be included. First, the relativistic variation of mass with energy 
m = y{E)me broadens the cyclotron resonances —(« — k\\v\\/y — ltojy)~\ 
Second, finite Larmor radius effects k±p0 associated with the large particle energies 
cause high-order cyclotron harmonics to make important contributions to the 
plasma response even at relatively low wave frequencies u — fl^. 

In most cases of interest in fusion research, electron temperatures are limited to 
7*0 < 20 keV. In this weakly relativistic regime, 7 1, Doppler broadening dom-
inates relativistic effects except for very nearly perpendicular propagation, n | < 
Tg/mgc2 and n | < 1 — J22/w2. Also, k±pg generally remains small so that 
higher, nonresonant cyclotron harmonics make a negligible contribution to the 
plasma response. Now there is quite an extensive literature on electromagnetic 
wave propagation in weakly relativistic plasmas. Trubnikov1 derived an expression 
for the plasma conductivity tensor of a relativistic Maxwellian plasma. This expres-
sion involves infinite integrals over MacDonald functions that are quite difficult to 
evaluate numerically. Dnestrovskii et al.2 and especially Shkarofsky3 derived from 
Trubnikov's expression a weakly relativistic limit in which cyclotron harmonics are 
treated individually and velocity space integrals are represented in terms of the FJ2H 
and F£z,n\\) functions (see Ref. 3). Since that time a number of alternative formula-
tions of the weakly relativistic problem have appeared,4,5 and numerous authors 
have used these results to calculate damping rates and investigate heating in 
specific devices. For a comprehensive collection of references see Ref. 6. 

However, there exists a class of devices in which microwaves are used to pro-
duce very energetic populations, Te — m9c2 (Ref. 7). For example, in the ELMO 
Bumpy Torus-Scale (EBT-S) device electron temperatures of 500 keV are obtained 
routinely, and scaling arguments indicate that temperatures of order 1 MeV are to 
be expected in future EBT devices such as the EBT Proof of Principle (EBT-P). In 
addition, hot electrons are essential to the operation of thermal barriers in tandem 
mirrors. The electron cyclotron resonance heating (ECRH) must establish and main-
tain an average hot electron energy of = 4 5 0 keV in the thermal barrier and a tem-
perature of = 7 0 keV in the end plug.8 Hot electron temperatures of up to 
650 keV are being discussed for the Mirror Advanced Reactor Study (MARS) tan-
dem mirror reactor. At temperatures such as this the weakly relativistic expansion 

1 



2 

7(p) — (1 + p2/m2c2)1 /2 a 1 4- p2/2m2c2 certainly breaks down. The cyclo-
tron harmonics are broadened until individual harmonics overlap and are washed 
out. Also, high harmonics contribute to the plasma response, up to I > 40, 
depending on f IJu. Clearly, a fully relativlstic treatment is required. 

In order to study hot electron ring heating in EBT devices a fully relativistic wave 
damping model was developed for use in the RAYS geometrical optics code.9 This 
model was based on the Poynting theorem, 

•f w ds ~ 
Air 

(1.1) 

Here, s is the arc length along a ray, S = Re[£* X (n X £)] Poynting vec-

tor, n cfc/w = real refractive index, E •» wave electric field amplitude, and 

<th ™ Hermitian part of the relativistic conductivity tensor. The real refractive 

index is determined from the ray-tracing code, which uses the cold plasma disper-
sion relation 

D(n) — det{£» = det (1 - n2)j_ + ^ ffA{n) 0 , (1.2) 

where <rA ™ anti-Hermitian part of the plasma conductivity. Two plasma com-

ponents are included in a A : a cold core plasma component and an annulus com-

ponent, for which a A is also assumed to be of the cold form. The electric field 

eigenvectors E used in the equation are determined from the cold plasma dispersion 

tensor with both components included, D • E 0. In calculating <rH an isotropic 

relativistic Maxwellian distribution function is assumed: 

F(p) 1 Pne 
m 3 c 3 4xK2(p) exp ~P 1 + Pi+p2± 

m c 

1/5' 
(1.3) 
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where p = mgc2/Tg and K2(p) is the modified Bessel function. An arbitrary 
number of cyclotron harmonics can be retained, and all Bessel functions containing 
finite Larmor radius effects are included without expansion. 

The rings in EBT form at the second harmonic cyclotron resonance and are con-
fined well away from the fundamental cyclotron resonance (see Fig. 1 of Ref. 9). 
Since the density of the hot electron plasma component is typically a small fraction 
of the cold (Tg < 500 eV) core component, it was felt that the real part of k and 

the electric field polarization £ would be adequately described by the cold plasma 

dielectric tensor equation (1.2) near the second harmonic resonance. This pro-
cedure clearly breaks down near the fundamental resonance, because even nonrela-
tivistically there are important finite temperature modifications to kr and £ when 

u — Applications of this model to EBT devices have been presented in 
Ref. 9. A Poynting theorem approach similar to this was employed to calculate 
opacity to synchrotron radiation in Ref. 10. 

In order to justify the validity of our Poynting theorem model for EBT and to 
investigate predominantly hot electron plasmas such as those in tandem mirror ther-
mal barriers, a code was developed in which a A , as well as <rH, is calculated 

relativistically. By solving the relativistic dispersion relation we can compute the 

correct values of kr and kj, and by solving the dispersion tensor with the relativis-

tic k we obtain accurate polarization eigenvectors. With this code, we have 

addressed a number of questions arising from the relativistic effects: At what tem-
perature do the relativistic modifications become important, and, for a given tem-
perature, how many harmonics must be included in a A and <rH? What effect does 

high temperature have on qualitative features of wave propagation such as cutoffs, 
resonances, and polarization? From simple arguments one would expect that as the 
relativistic electron mass increases, the plasma refraction would decrease. This is 
borne out in calculations that show the real part of the wave refractive index nr 

r h&nging from the cold plasma value at low temperature to the vacuum value at 
sufficiently high temperature. These results indicate when cold plasma ray-tracing 
results are likely to be valid. 

In this paper we investigate waves in a relativistic Maxwellian plasma described 
by Eq. (1.3). We have restricted consideration to perpendicular propagation, 
n|| = 0, in order to emphasize the effect of relativity over the better understood 
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effects of Doppler shift and because of the large amount of computer time required 
to evaluate and solve the dispersion relation. In Sec. II, we derive the relativistic 
conductivity tensor in a form suitable for computation and specialize to ny = 0. In 
Sec. Ill, we give solutions of the dispersion relation for various magnetic fields and 
plasma densities, indicating the behavior of the propagation constant kr and absorp-
tion rate k/ for increasing temperature. In Soc. IV, we compare damping rate calcu-
lations obtained using the full dispersion relation with those using the Poynting 
theorem. The results are summarized and conclusions discussed in Sec. V. 
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II. DERIVATION OF THE RELATIVISTIC CONDUCTIVITY TENSOR 

Electromagnetic waves in a relativistic plasma are described by the Vlasov-
Maxwell system: 

V X £ 
dB 

1 _2L 
c dt ' 

dB 
V X B ^ f + ^ J , 
- ~ c at c — 

df 
(2.1) 

J = 2 f <Pp vfj(P) ' 

Pi m. 
£ + — X B 
~ c ~ 

where p = ymv, y - (1 - i/fyc*) 1 / 2 = (1 + p2/™2^)1 7 2, ey — charge of 

yth particle species, and mj — mass of /tl»soecies. In this paper, only electrons are 
considered so that ey = e = — |e| and rrij *= m8 = m. We investigate plane 
waves propagating in a uniform plasma with equilibrium magnetic field B in the z 
direction, B° = B°z, and equilibrium distribution function F{ v). The perturbed 

quantities are then of the form 

. iik-x-u>t) 
E(x,t) = Ee ~~ 

(2.2) 
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With this anscitz the linearized Vlasov equation becomes 

- / 
1 . o) p • k 

ym — — 
; S v Bf f ip X z)- — 

y ~ dp 

1 
E + —1— p X B 
— ymc ~ — 

of 
dp 

= 0 , (2.3) 

where flo • efP/mc < 0 is the nonrelativistic cyclotron frequency. The manipu-
lations necessary to solve Eq. (2.3) for f are quite standard and can be found in 
many textbooks. The plasma current can be expressed as 

J f (fip vf(p)ei{k x~ut) - a • E , (2.4) 

which is then used in Maxwell's equations to give the dispersion equation 

D • E — (1 - n2) I + nn + — a 
4tt 

E - 0 (2.5) 

and the dispersion relation 

Din) = det[D] = 0 . 

For an isotropic equilibrium distribution, F = Ry), the form of the conductivity 
tensor is much simplified, 

2ire2 

a = dPz J 0 0 cfpx (m3c3) £ S -
jam Jo ' Jo y(p) oy , 

M,ip) 

n2pz n0 
yip) I — 

mc (a 

(2.6) 
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where 

M, (P_L'P/> ™ 

/ftp 
n_L<u 

-/W, 

/w, 

, P ± 
mc 

P± 
mc 

-M, 

I * 
n j_ a) 

K* 

M 
fa-
me 

1 m2c2 M 

Pi 
mc 

J? 

where the Jt are Bessel functions of order / with argument nj,(pj_//nc)(a)/Qo) ar |d 
the pg integration is taken over the usual Landau contour. For notational conveni-
ence we measure momentum in units of mc (that is, p = mcp'Y, we introduce a 
cyclotron frequency normalized to the wave frequency ft = (Qq/^ a n d we 
renumber the index I such that positive harmonics are resonant for electrons, 
I ~ — /'. With these changes, when we drop the primes on p and /, Eq. (2.6) 
becomes 

a — 
lire2 
jam "o f°° *P± P± J°° dpzm3c 

3-3 J_ 1 8F 
—oo 

oo 
dy , ̂  
' —oo 

Af, 

7 — nrpz - /ft 

(2.7) 

where now 

Mi = 

/ft 

-/W, 
M, xz 

• I»' 
-/ — p±JtJt n ± 

PU'2 

-M, yz 

n ,2 — Pzl n ± 

iPzPLJiJ'l 
_2 .2 
PzJl 

(2.8) 

The argument of the Bessel functions is b = nj_pj./ft ^ 0. To get Eq. (2.8) we 
have used ft0 = —|fi<J and properties of Bessel functions J—/(z) = {—1 
jL / z ) = ( - 1 ) U J / - 2 ) = ( -1 ) ' j / z ) , and = ( - D ' - ^ ' t o . 
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To treat the singular resonance denominator in Eq. (2.7) we assume that <o is 
real and that nz has a small positive imaginary part. Then the Plemelj relation gives 

1 

7 - nzpt ~ in 7 - nzpt - IQ 
— iirbiy — n2pr — IQ) 

so that 

po J00 3e3 J_ M ^ 
ss u)m 0 J-oo * 7 07 = 

(2.9) 

2 M / 
<r4 = - / — P j > i P i / " - , = w m J° J - 0 ° 7 7 - nzpz - M 

(2.10) 

where P indicates a Cauchy principal value. It has proved convenient in the numeri-

cal computations to transform the integrals over pz, p± to integrals over p — 

+ P2)1 / 4 and n = cos x» where x ® th® Polar angle in velocity space, that 

is, pz = pn and p± — p(1 — m2)1/2- When n± is real, aH and aA are, respec-

tively, Hermitian and anti-Hermitian matrices. 
Finally, we explicitly introduce the relativistic Moxwellian distribution function 

n, « 
F(7) = —z-T • " , . e py . (2.11) 

m3c3 4irK2{p) 

where n0 = hot electron density, ^(p) ~ modified Bessel function, and 
p = mc?/T is an inverse temperature variable. At small energy (large p), 
Eq. (2.11) reduces to a nonrelativistic Maxwellian with temperature given by T — 
mc?/p. At higher energy, expressing p in terms of the kinetic temperature is some-
what more complicated. With the distribution in Eq. (2.11) the average particle 
kinetic energy (e) can be expressed as 
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( £ ) = — f d2p mc2(y ~ 1) F{y) - mc: 

n„ J 

3 *1<P> — T 
K2(p) 

Using the asymptotic expansions of K1(2 for large p, 

An2- 1 
- a/5 e~p11 + 

Bp 

gives the usual nonrelativistic result, 

(e) - mc2(y - 1) ~ y T for 7/mc2 « 1 , 

(2 

(2 

while in the ultrarelativistic limit, p = mcP/T « 1, the power series expani 
Kn ~ 1/2r(n)(3/2)n, gives 

( 0 = 5 7 " - 1 
10 for T/mc2 » 1 (2 

In the intermediate range p = 1, we find (e> = 2.37 = 3/2(1.67) so that 1 
thirds of the average particle energy when T = 500 keV is about 800 keV. 

The final form for the conductivity tensor used in all computations in this p 
is then 

H el <T — 8 K M 

2 
— 2 f°° dp f 1 , M, (P,n)8(y - n,pn - /S) , (2 (t) , J0 y •> — \ sss / 

r4 _ _L i5e. v p f o a ^ Z a - p i r fl 
ir 8/C2(p) w 7 Jo 7 

M, (p, ju) / 

7 - nzpn — / f i 

(2 
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A. Computation of a H 

SS5 

The presence of the 6 function permits one of the integrals in in Eq. (2.15) to 
be done immediately. It has proved convenient to do the p integral analytically and 
the n integral numerically. Contributions to the p integral come from roots of the 
argument of the b function, Hp), where 

f{p) - ( 1 + p2)1 / z - nznp ~ IV . (2.17) 

Roots of this function can be visualized as the points of intersection of the 
^.hyperbola y "A 1 + p2)1^2 with the line y /fi + [nyx)p; see Fig. 1. Solving 

i[p) — 0 gives two roots: 

/ftn./i ± ( / 2 fP + n . V " 1)1/z 

p ± ; — h • ( 2 ' 1 8 ) 

1 - n,V 

ORNL D W G 8 4 C 2 0 4 6 FED 

P + 
Fig. 1. Location of resonant values of momentum. 
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However, one or both solutions of Eq. (2.18) may be superfluous. A glance at 
Fig. 1 shows that we require three additional conditions: 

1. p must be real, so the discriminant A " PTF2 + n*n2 — 1 ^ 0 , 
2. p must be positive, so the root is within the right side of the hyperbola, 
3. the root is on the top branch of the hyperbola, so lW+ ntnp > 0. 

It is tedious to sort out these conditions algebraically, but the results can be 
easily understood with the help of Fig. 1. We group the results for varying nj i in 
four cases according to the relative cyclotron harmonic number iff [i.e., the y inter-
cept of the line /R + (nzfi)p]. 

Case 1. 

if m < o , 
there are no valid roots for rign < 1 , 

p_ is a'valid root for n,/x> 1 . 

Since lti| < 1 this implies that there are no resonant particles for zero or negative 
harmonics unless nt> 1. That is, anomalous dispersion, I < 0, and inverse 
Cherenkov radiation, I «• 0, are possible only if the parallel wave phase velocity Is 
less than c. 

Case 2. 

If 0<ISI< 1 

there are no valid roots for r>zn<in^),^ — (1 — fifl2)^ , 

there are 2 roots for (r»zjt)^ < ngn < 1 , 

p_ is a valid root for n t f i > 1 . 

The value ( n ^ ) ^ defines the point of tangency between the hyperbola and the 
line; that is, A •• 0 and p + ~ p 
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Case 3. 

p + 0 is a valid root for nzn< 0 , 

If / J T - 1 , 

p_ ™ 0 and p+> 0 are valid roots for . 

This is the case of exact cyclotron harmonic resonance. We see that there is 
always a root at p • 0; however, this root makes no contribution to the integral 
since the argument of the Bessel functions vanishes. 

Inspection of Fig. 1 also reveals the characteristic asymmetry with respect to (2 
of the relativistic cyclotron absorption profile. Consider nz — 0, in which case the 
moving line is horizontal, y — /fl for all p. Then there are no intersections 
(resonant particles) below the harmonic (lJT< 1), but there is an intersection at 
increasing p as i f f increases above 1. The increase of p + with /{T causes the 

strength of the resonance to be weighted by J,2(n 1 —/izp+) for small p + 

and by the distribution function exp[—p{1 + p+)1 / 2J at large p+ . This produces 
the absorption line profile peaked above the cyclotron harmonic. For nonzero nz the 
moving line slopes as n ranges from — 1 < n < 1, allowing some resonance 
below the cyclotron harmonic (/(T< 1, n> 0) and permitting resonance with lower 
energy particles above the cyclotron harmonic ( / f T > 1, f t < 0). The Doppler shift 
associated with nz therefore tends to wash out the asymmetry of the relativistic 
shape. In the nonrelativistic limit one considers only the extreme left edge of Fig. 1 
such that the hyperbola appears as the horizontal line y 1. Then the absorption 
line shape is symmetric and determined entirely by the slope of the line 
y » IQ + inzfi)p, that is, Doppler shift. 

Case 4. 

P 4 is a valid root for ntn< 1 , 

there are no valid roots for ngfi ^ 1 . 
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Returning now to the evaluation of a H we perform the p integration in 

Eq. (2.15) including the contribution of the roots of Hp), Eq. (2.17), and obtain 

- ^ <*> o2 M,(p±.n) 
ffH fil^JV f - - r . (2>19) 

8K2(p) <a ,JZ0D
J * yip±) \f'lP±)\ 

Using Eq. (2.17) we obtain f'{p) — {p—yngn)/y. Since Hp) — 0 implies 7 — 
nzpp + /JT this can be written f'(p) — [(1 — n2n2)p± — /finz/i]/y(p ± ) . Using 
Eq. (2.18) gives 

r ( p , - (/2JT2 + „ y - d 1 * - • <2-20> 

x 7(p±) T(P±) 

The expression for <rH in Eq. (2.19) simplifies to 

rH 0} p» 
6K2{p) 

00 

• 
—00 

P^M, (P±,M) 

(/2JP + n2n2 - 1) 1/2 (2.21) 

where the range of integration over p. and the sim over ± are restricted by the 
existence of valid roots p± Jiecussed in the four cases atx>ve. 

Case 1: /5~ < 0. There is no contribution unless n z > 1, in which case 
p - is included and the range of integration is 1/nz < n < 1. 

Case 2: 0 < /Q < 1. Both p ± are included and the range of integration 
>8 Mmin ̂  m < 1. It will be seen that the integrand in Eq. (2.21) has a singularity 
at ft = associated with the degeneracy of p±. The singularity is integrable, 
however, by making the change of variable 

(1 Hft^.cnfi # coa^- . (2.22) | , . WOW — ~ 
|n,| 1 - ^ Q 2 
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Then for values of I such that 0 < Mmin m <1 ~~ ^JP)1 / 2 /n2 < 1, the contribu-
tion to a H is 

p2 

8K2(p) w 7 |"j| | Jo ± ft™ 

where 

0, max = cos 1 

1 - /2jp 

1/2 

If n r > 1, there is an additional contribution from p_ over the range 1 / n z ^ f i 
^ 1. 

Case 3: 1 0 = 1. Exactly at cyclotron resonance the denominator in 
Eq. (2.21) vanishes at /u = 0 (i.e., Mmin = 0) and the transformation equation, 
Eq. (2.22), fails. However, the integrand is not actually singular since p±(n — 0) 

vanishes when IQ = 1. In particular, we have p± — (nz/x ± |n7/*|)/11 — n2n2). 

Since p _ < 0 , only p + contributes for f i ^ O and we obtain for this particular I 
value 

M / ( p + t M ) e - y ^ . ( 2 . 2 4 , 
SK2(p) u J o <1 - n f f i ) 2 ^ 

Case 4: IQ > 1. Only p+ contributes and the range of integration is 

- 1 < n < 1. 

A computer code has been written to evaluate <rH using Eqs. (2.21), (2.23), 

and (2.24). This code has been used with the Poynting theorem, Eq. (1.1), to 
investigate wave absorption by the hot electron rings in EBT devices. Results of 
these studies have been reported in Ref. 9. 
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In the following sections the full dispersion relation is solved for the special case 
nz — 0. When nz — 0, we have p + «=» (/2JP — 1)1/2, independent of n, and 
the expression for aH, Eq. (2.21), is greatly simplified: 

2 
a H = - r ^ T - : — | ( / 2 f i 2 ~ 1 ) 1 / z e ~ ^ / ( p + ) , (2.25) 8 K2(p) u 

where 

l,(p)>= J^dnM^p.n) . (2.26) 

Figure 2 shows the relative contribution of the various cyclotron harmonics to a 
typical element of a H , <7*, as a function of fl = IQq/o}! for T = 40 keV, 

nz = 0.0, and rij_ — 1.0. One can see considerable overlap in the higher harmon-
ics. I >. 2, even though nz = 0 and only relativistic line broadening is present. 
The absorption rate kj tends to be proportional to the sum over / of so the 

temperature dependence of the total a H is indicated by the plots of fc/ [Fig. 4(b) 
below and Fig. 4 of Ref. 9]. 

B. Computation of aA 

Computation of a is much more cumbersome and much more costly in com-

puter time than a H since two velocity space integrals must be performed numeri-

cally. It has proved convenient to perform the p. integral in Eq. (2.16) first, 

aA= 1 — 2 S°° ^ I, (p) , (2.27) 
rr 8 K2(p) oj 
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Fig. 2. Contributions of various cyclotron harmonics to aHere T, 
n, 0, 1.0. 

40 keV, 

where 

/ » ( P ) - - — P d f t V P ~ . 
= n2p - 1 - 1 M ~ Mo 

(2.28) 

M o " — [7<P) - (2.29) 
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There are three cases depending on the value of hq. 
Case 1: ImqI > 1 • The ju integral is regular. 

Case 2: |/u0| = 1. The (i integrand has a singularity at the upper or lower 
limit. This singularity is not integrable for / = 0 although the integral over p does 
still converge. 

Case 3: |/x0| < 1. The ix integral is Cauchy. 

Again, there is considerable simplification if nz — 0. Then the resonant denomi-

nator is independent of fi, and a A is 

where //(p) was defined in Eq. (2.26). Again, one must consider three separate 

cases depending on refer again to Fig. 1). 

Case 1: lSl< 1. The p integrand is regular, and there are no resonant par-
ticles. 

Case 2: /S2 = 1. The p integrand has an integrable singularity at p = 0. 
Case 3: /ft > 1. The integral is Cauchy. 
In case 2, we make a change of variable to x = -Jy ~ 1, which transforms 

the integral in Eq. (2.30) to 

In case 3, we divide the range of integration into two parts: a symmetric region 
about the singularity (7 = 19) and a part extending to infinity. Introducing a vari-
able x such that 7U) = IQ + {/fi — 1)x, integral in Eq. (2.30) becomes 

(2.30) 

(2.31) 

P f 1 d x - ^ - e - p y ^ / M + f00 d y - ^ = . I ,[p(y)] . 
-1 

(2.32) 
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In the computations below with the relativistic dispersion relation, a A is calculated 

from Eqs. (2.30M2.32). 
Figure 3(a) shows the functional dependence of the / n 1 term (i.e., of the 

fundamental resonant term) of <rA
x on I and ST for fixed n = 1.0 and nz »• 0. 

Note that nj_ -» 1.0 is not the solution of the dispersion relation. At low tempera-
ture a A follows almost exactly the cold plasma result, 

<?«</ - 1) = 
a pe 

2w(o> - |£2-1) 

The singularity at S2 — 1 dominates the wave propagation, absorption, and polariza-
tion in nonrelativistic theory, particularly for the extraordinary mode. We see in 
Fig. 3(a) that the resonance is washed out at high temperature and for T > mc1 

the / = 1 contribution converges to zero at all $2. This does not imply that <rA 

itself is negligible at this temperature since higher / values must be included. Figure 
3(b) shows aA

x(W) total, including harmonics — 9 < 2 0 . At 7" = 280 keV this 
was necessary to achieve 1% accuracy in <ta. 



Fig. 3. Temperature dependence of a^Q^w) for n x
a 0 , n_j_ = 1.0. (a) N 1 

term, (b) sum of terms N — —9 through Af 20. 
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III. SOLUTION OF THE DISPERSION RELATION 

In the limit n|| = 0 the dispersion equation simplifies to 

€xx exy 0 
- « X K

 0 

e « - n± 

Ev = 0 , (3.1) 

where £ I + (4tt//w) (o"4 -f trw). Also, the dispersion relation factors into 

ordinary and extraordinary mode branches, 

n \ — = 0 : ordinary mode , (3.2) 

2 *xxl"±K{n±) ~ (xy{n±)
 n . M ^ ,,,» n i : — ; 0 : extraordinary mode . (3.3) ejn±) 

These equations are solved numerically by standard root finding techniques. 
Of course, the ĉ - are transcendental functions of nj_ so the dispersion rela-

tions have in general an infinite number of roots, including the electromagnetic ordi-
nary and extraordinary modes as well as the Bernstein warm plasma modes. For 
simplicity, we first consider weakly damped modes (n/ « n} that go continuously 
into the electromagnetic waves at low temperature. This is accomplished by 
approximating o(n±r + /njJ — <r(n±j and then solving Eqs. (3.2) and (3.3) for 

complex nj_, initializing the root finder to the appropriate cold plasma root. Figure 
4 shows extraordinary mode kr and kj vs magnetic field strength (Clg/a>) for various 
values of Tg. For these calculations the wave frequency was o>/2ir = 13 GHz and 
the density was given by co^/co2 = 0.3 (i.e., ne = 1.2 X 1012 cm - 3 ) . It 
should be mentioned that only the dimensionless quantities Qg/o), and 
Tg/mc1 enter the dispersion relation for the refractive index n. The actual wave 

frequency therefore only enters as a scale factor on k = wn/c. 
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Fig. 4. Temperature dependence of (a) k f i j u ) and (b) fc/O/o)) for o>/2* = 18 GHz. 
= 0.3. nz = 0. The argument of the Bessel functions was taken to be real. 
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At low temperature (Ta = 0.64 keV), kr follows almost exactly the Appleton-
Hartree solution except for a slight wiggle near the second harmonic (ft^w = 0.5) 
and a shoulder near the fundamental (Qg/ui = 1 ) . In particular, the right-hand 
cutoff (denoted Co.64 in the figure) and the upper hybrid resonance (denoted fto,4e) 
are at the correct cold plasma values. In Fig. 4(b) one sees a sharp second har-
monic absorption line and invisibly small absorption at the fundamental. Recall that 
nonrelativistically, extraordinary mode, fundamental resonance absorption vanishes 
for n|| = 0. At higher temperature, Tg = 23 keV, one sees much larger and 
broader structure in kr at the second harmonic and structure at the third harmonic. 
In kt there are now broad peaks at the third harmonic and fundamental, whereas the 
second harmonic peak is reduced in size but greatly broadened. The most striking 
feature, however, is that the right-hand cutoff C23 and the upper hybrid resonance 
/?23 have moved to higher magnetic field. Also, the maximum value of kr at the 
resonance is only 7 c m - 1 , which is about a factor of 2 above the free space 
value, ko = 3.77 c m - 1 . At 77 keV the right-hand cutoff C77 and the upper 
hybrid resonance R77 have again moved to higher field but the cutoff has almost 
overtaken the resonance. There is virtually no maximum in kr that would be associ-
ated with an upper hybrid resonance. Also note the general overlap of second and 
higher harmonics due to resonance broadening. At still higher temperature, Te — 
164 keV, the resonance/cutoff pair has disappeared altogether, leaving the merest 
vestige of cyclotron harmonic structure. The damping is relatively weak and nearly 
independent of magnetic field. 

The interesting temperature dependence of the right-hand cutoff can be studied 
analytically using the dispersion relation. From Eqs. (3.2) and (3.3) we see that the 
condition for a true cutoff (kr = kj = 0) is 

ea{n = 0) = 0 : ordinary mode , 

exx(n.L = °)*xy<n± = 0) — = 0) = 0 : extraordinary mode . (3.4) 

In the limit nj_ -+ 0 for Eq. (2.27) the only nonzero terms are the I ± 1 terms 
c.f axx, <rxy, <Tyy and the I = 0 term of Ozr In particular, when Q < 1, a H = 0, 

and we obtain for e 

2 2 

p 2 + 1 - fl2 ' 
(3.5) 
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(3.( 

(3.i 

Equation (3.6) can be solved immediately to give the density of the ordinary moc 
cutoff, 

The right-hand side of Eq. (3.8) is an increasing function of temperature, which I 
the nonrelativistic limit (p » 1) approaches unity. 

Equations (3.5) and (3.6) can also be used to derive an expression for th 
magnetic field of the right-hand cutoff. However, the integrals cannot be performe 
analytically, so in Fig. 5 we have plotted {toJo))Cutoff v s temperature for varioi 
densities, Sl^/ta2. The curves terminate when Slg/o) = 1. This is because <rH 

nonzero for S l ju > 1, and the cutoff condition becomes complex. Both the re 
and imaginary parts of Eq. (3.4) cannot be made to vanish simultaneously for re 
Sljoo. Thus in Fig. 4 and in the figures to follow, as increasing temperatui 
attempts to push (£2 Jut)cutoff beyond unity, the cutoff disappears altogether. No' 
that the location of the cutoff in Fig. 4 is accurately given by Eqs. (3.4)-(3.6). 

The calculations above show in a simple way the trends with increasing ten 
perature. However, because rij was neglected in <r, the results are not accura 

near the cutoff kr -*• 0 in the evanescent region nor for the Tg — 77 keV cat 
near the fundamental, where the damping is strong. We remedy this now by allov 
ing a complex argument for <r. This allows us to study heavily damped ar 

evanescent waves and introduces the Bernstein mode roots. We will see that tl 
coupling between the extraordinary and Bernstein modes is quite interesting ar 
complicated, particularly in the region of magnetic Field strength between the co 
plasma extraordinary mode cutoff, ilg/ta = 1 — ta^Jta2, and the fundament 
cyclotron resonance. 

cutoff 

3 K2(p) 
(3.8 
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T9 (keV) 

Fig. 5. Magnetic field strength for right-hand cutoff vs temperature for various 
values of w^/w2. 

The behavior of extraordinary and Bernstein mode roots has been investigated 
rather thoroughly in the weakly relativistic limit near the second harmonic 
resonance.11,12 In that work a critical density was identified that for fixed tempera-
ture separates two regimes with different connection properties of the mode across 
the second harmonic [see, for example, Eq. (10) and following material of Ref. 11]. 
We consider first a case corresponding to the low density regime of the weakly 
relativistic theory. 

Figure 6 shows k, (solid lines) and kt (dashed lines) of the extraordinary and 
Bernstein modes as functions of flj<a for temperatures of (a) 16 keV, (b) 52 keV, 
(c) 77 keV, and (d) 185 keV. The wave frequency is <o = 2ir X 18 GHz, and 
the plasma density is given by w^/w2 = 0.2. For Te •= 16 keV the extraordi-
nary mode is continuous through the second harmonic resonance with a perturba-
tion near QJw = 0.5 due to the intersection of the Bernstein mode. The location 
of the right-hand cutoff has been displaced by relativistic effects from the cold 
plasma value of Slju — 0.7 up to 0.87, while the maximum of kr on the extraor-
dinary mode branch occurs at Q«/o> = 0.96 rather than 0.84, which is the upper 
hybrid resonance. This plot is comparable to Fig. 1 of Ref. 11 (note, however, 
that the ordinate in that plot is o>/ft« rather than QJu), and it does not show the 
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Q.t/CJ Slt/U> 

Fig. 6. kJXtJw) and kfQJu) for th« extraordinary mod* branch (solid lines) and 
Barnstain moda branch (daahad linas) with a£/<w2 — 0.2. »| — 0 for (a) T0 "» 16 keV, (b) 
T. - 82 kaV, (c) T, - 77 kaV. and (d) T. - 186 kaV. 
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Bernstein mode). As the temperature is increased to 52 keV [Fig. 6(b)], the right-
hand cutoff moves to SI Jot — 0.98 and virtually all peaking in kr that would be 
associated with the upper hybrid is gone. Additional structure is seen in the Bern-
stein mode near the second harmonic resonance. At higher temperature the cutoff 
attempts to move above QJu) = 1.0 and the resonance/cutoff pair effectively 
annihilate each other. According to Fig. 5 the critical temperature for u « = » 
0.2 it 62 H©V. In Fig. 6(c), Tg

 8=8 77 keV, there is no cutoff at any magnetic field 
for the extraordinary mode, although damping is quite strong near the fundamental. 
At very high temperature, Te = 185 keV in Fig. 6(d), kr for the extreordinary 
mode is almost independent of magnetic field with only a slight perturbation due to 
the presence of the Bernstein mode. The damping is weak and almost all harmonic 
structure is washed out. 

In Fig. 6(a and b) we have not plotted the Bernstein mode root for ft > 1. 
The Hermitien part of the conductivity is not an analytic function of Qe at ISI = 1 
because of the fector p+ — D1'^ in Eq. (2.24). At these intermediete 
temperatures the magnitude of k± for the Bernstein mode is lerge and the I = 1 
contribution to <rH turns on, very rapidly making the roots difficult to follow numeri-
cally. The Bernstein mode itself is strongly damped here and of little practical 
importance. It is interesting, however, to see how this mode influences the extraor-
dinary mode root near the fundamental resonance. We will defer this topic for 
future publications. 

In the weakly relativistic theory, as the density is increesed, a regime is 
reached in which the Bernstein mode on the low magnetic field side joins smoothly 
onto the extraordinary mode above the second harmonic resonance. Figure 7 
shows such a high density regime case, oj^/co2 — 0.3, for temperatures of (a) 16 
keV, (b) 52 keV, (c) 108 keV, and (d) 185 keV. In Fig. 7(a), Te = 16 keV, we 
see that the extraordinary mode from the low field side joins a heavily damped 
mode at the second harmonic resonance (denoted AB in the figure). As previously 
mentioned, the Bernstein mode connects to the extraordinary mode branch above 
the second harmonic (point C). With increasing Sljw the extraordinary mode con-
tinues to the cutoff (eccurately predicted by Fig. 5) and joins to the evanescent 
extraordinary mode point D coming from the high field side of the fundamental. 
The extraordinary mode therefore exists as two disconnected branches with a break 
at AC. Now, as the temperature is increased, kr increases for the heavily damped 
mode (AB), approaching the Bernstein mode at Sljta = 0.5 and approaching the 
evanescent extraordinary mode near the right-hand cutoff. In Fig. 7(b), T0 — 
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Fig. 7. kfikju) and kfQ,/a>) for the extraordinary mode branch (solid lines) and 
Bernstein mode branch (dashed lines) with ~ 0.3, nj — 0 for (a) T, — 16 keV, (b) 
T . = 62 keV, (e) T , = 108 keV. and (d) T # - 185 keV. 
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52 keV, the heavily damped mode has joined the Bernstein mode, while the 
extraordinary mode on the low field side is continuous with the branch of the 
extraordinary mode that goes to the cutoff (point D). That is, point A now 
coincides with point C. The weakly damped mode joins smoothly with the extraor-
dinary mode coming from the high field side at point B. Again the extraordinary 
mode is in two disconnected branches, but this time the break is at BD. As the 
temperature is increased to 108 keV, Fig. 7(c), the cutoff disappears and the 
extraordinary mode again becomes a single continuous branch. The Bernstein mode 
makes only a minor perturbation at the second harmonic but strongly influences the 
extraordinary mode near the fundamental. At T9 — 185 keV, Fig. 7(d), the 
extraordinary mode is smooth and weakly damped throughout.. 

Solution of Eq. (3.2) for the ordinary mode can be carried out in the same 
manner. Of primary interest here is the dependence of k on density. Figure 8 
shows kr vs uig /CJ2 for temperatures of 0.9 keV, 24 keV, and 78 keV. At low 
temperatures kr follows the cold plasma results, 1 — oo2

a/a>2, quite closely. 
Increasing temperature increases kr at fixed cjpfl/w2 toward the vacuum value k0 = 
3.77 cm~1 and also increases the density of the cutoff. Again the cutoff density is 
accurately given by Eq. (3.8). 

It is also of interest to examine the effects of high temperature on the electric 
field polarization eigenvectors, that is, the solution of Eq. (3.1). In cold plasma 
theory the singularity of <rA at w = completely "shields out" the right circularly 

polarized component of the field, E- = Ex — iEy, at the fundamental resonance. If 
n|| 0, even nonrelativistically finite temperature effects resolve the singularity and 
allow a small component of E- at the fundamental resonance. This small correc-
tion to E is quite important for calculation of cyclotron damping at the fundamental 

using the Poynting theorem (see, for example, Ref. 13) although away from the 
fundamental the cold plasma eigenvectors can be used. Figure 9 shows the magni-
tude of the E- component for the extraordinary mode vs fig/o) for temperature 
T = 2.5 keV, 23 keV, and 64 keV. The wave frequency is 18 GHz and the 
plasma density is CO^/OJ2 = 0.3. The total eigenvector has been normalized such 
that E* • E — 1. We see the dip in |£F-| at QJo) — 1 for the low temperatures, 

but this is completely gone at higher temperature. 
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Fig. 8. kr vs u£/a>2 for r # = 0.9 keV, 2 4 keV. and 78 keV. 

IV. COMPARISON WITH POYNTING THEOREM CALCULATIONS 

One of our main objectives has been to determine how well the Poynting 
theorem model [Eq. (1)] using cold plasma values of kr and E agrees with the 

solutions of the full dispersion relation. Figure 10 compares k/ obtained from the 
dispersion relation (solid curve) with kj obtained from the Poynting theorem (dashed 
curve) for temperatures of (a) 52 keV, (b) 185 keV, and (c) 1 MeV. The wave 
frequency is again 18 GHz, and the plasma density is 1.2 X 1012 c m - 2 

(co /̂co2 = 0.3). Since the waves are relatively weakly damped, for ease in com-
putations at the very high temperatures we have employed the version of the code 
using real arguments for the Bessel function (this code was used to produce Fig. 4). 
It is clear that the Poynting model must fail at the cold plasma cutoff (Slju> = 0.7 
in Fig. 10). Since the cold plasma kr vanishes there, all the Bessel functions in aH 
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Fig. 9. Right circularly polarized component of extraordinary mode E (i.e., 

|/J E|) VS Q^/u for various temperatures. 

are zero, resulting in zero absorption. The Poynting theorem results are not mean-
ingful between the cutoff and fundamental resonance because the cold plasma root 
is purely evanescent. On the other hand, with the full dispersion relation, neither kf 

nor kt vanishes at the cold plasma cutoff. Similarly, the Poynting model must fail 
near UJoj = 1 since in cold plasma theory E- is zero at the fundamental, 
whereas relativistically E - M i is of order one. From Fig. 10 we see that at the 
second and higher harmonics (i.e., Slju) ^ 0.5) the Poynting theorem calct don is 
reasonably accurate up to 185 keV. Notice that the absorption predicted* by the 
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Fig. 10. Comparison between kjSk^dt obtained from the dispersion relation (solid 
line) and kfi l jw) obtained from the Poynting theorem (dashed line) in a purely hot plasma 
with = 0.3 at (a) T, = 50 keV. (b) T, = 185 keV. and (c) 7 . = 1 MeV. 
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Poynting theorem is nonzero at Slg/u — 1, This is the contribution due to the left 
circularly polarized component, E+, which becomes significant at high temperature. 

The justification for using the Poynting theorem code for EBT calculations was 
that the hot plasma in EBT is coexistent with a much cooler component with higher 
density [Tcoid ~~ 300 eV, ncoW ~ (2-10)nhot]. It was considered that kr and E 

would be dominated by the cold component, which would render the Poynting 
theorem formulation valid for EBT even in the range 0.5-1 MeV. We have there-
fore investigated the effect of adding a cold component in both formulations. In 
Fig. 11 we compare absorption calculations in which the total plasma density is 
1.2 X 1012 c m - 3 (oo2

e/w2 = 0.3) with the hot component (Tg = 502 keV) 
representing all of the density, Fig. 11(a); only half of the density [(w2

e/a>2)/,or = 
0.15], Fig. 11(b); and one-sixth of the density [(a)2

a/w2)hof — 0.05], Fig. 11(c). 

The remainder of the plasma is described by the purely anti-Hermitian, cold 
plasma conductivity. One can see that the agreement is significantly better than for 
the comparable case of purely hot plasma [Fig. 11(a)]. The presence of the cold 
plasma component effectively shields out the E- component of the wave field and 
results in reduced absorption and much improved agreement between models at the 
fundamental resonance. It is interesting that the presence of the cold plasma 
component reintroduces the right-hand cutoff in the calculations with the full disper-
sion relation, although the hot plasma component shifts the cutoff to a higher 
magnetic field than the cold plasma value. We have not plotted kr here, but the 
zeros in kj above the second harmonic in Fig. 11 are in fact associated with the 
cutoff. 
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V. CONCLUSIONS 

We have found that for n|| = 0 and Tg above a few tens of kilo-electron-volts 
both the wave number, kr (=*oA), and damping rate, kt (=s<rH), are significantly 

modified by relativistic mass shift and large k±pg. Above about 40 keV, cyclotron 
harmonic overlap becomes important and at least three harmonics must be included. 
To obtain 1% accuracy in calculating aA at 280 keV [Fig. 3(b)] it was necessary to 
include harmonics I = — 9 to / = 20. 

As one would expect intuitively, the relativistic mass increase associated v ith 
increasing Tg reduces the dispersive property of the plasma. Both the right-hand 
cutoff and the upper hybrid resonance move to higher magnetic field and the 
separation between them decreases. At sufficiently high temperature (see Fig. 5) 
the resonance and cutoff disappear altogether. Above this temperature the extraor-
dinary mode has no evanescent region, kr = 0, at any magnetic field. Above 
about 20 keV there are significant deviations in kr from the cold plasma value. Of 
course, the discrepancy is most pronounced near the cutoff and upper hybrid reso-
nance, but large differences occur throughout the range 0.5 < Qg/<a < 1.5. As Tg 

increases, the cyclotron harmonic structure washes out due to resonance overlap 
and the magnitude of <rA decreases. Thus for Tg > mgikr approaches the 

vacuum value, kr = io/c. 
These results have interesting consequences for ray tracing. Over most of 

parameter space the cold plasma rays should be valid when Tg < 10-20 keV. 
Also, for Tg > 500 keV, plasma dispersion can be neglected and straight-line 
vacuum trajectories used. There is, however, an uncomfortable range, 20 keV < 
Tg ^ 500 keV, in which electromagnetic waves can be weakly damped, but the 
ray trajectories are not well described by either cold plasma theory or vacuum solu-
tions. An additional complication comes in through the temperature dependence of 
kr, which may result in ray refraction due to temperature gradients. 

For temperatures less than about 20 keV, our calculations are in relatively 
good agreement with the weakly relativistic expansion of Shkarofsky.3 Much above 
this temperature resonance overlap becomes important, the expansion of y breaks 
down, and the small Lart.,or radius expansion of the Bessel function is not valid. 
From the standpoint of heating hot electron plasmas, one of the most important 
features we have observed is that for fixed SlJ<a the absorption rate, kj, peaks at a 
certain finite temperature, then decreases above this point. At the second harmonic 
resonance, the peak absorption occurs at Te = 75 keV. For Tg > 500 keV, kj is 



approximately proportional to Te
 2/1, which is the asymptotic behavior of the nor-

malization factor of the relativistic Maxwellian, e/K2 (p). This effect can be under-
stood physically as follows: cyclotron harmonic absorption is a finite Larmor radius 
effect, kt — {J? {k±,v±/Q))t so that at low temperature kt increases with { V_L). 
However, at high temperatures the distribution is widely spread out in velocity 
space so that the density of particles resonant with a wave of fixed (k, <*)) 

decreases as temperature increases. As a practical matter, our calculations have 
shown that due to higher ring temperature in EBT-S (Trlng — 400-500 keV) com-
pared to EBT-I (Tring ~~ 150-200 keV), less power is actually deposited in EBT-S 
rings despite the much higher ring stored energy (typically 30-40 J compared to 
5 -10 J in EBT-I). In advanced devices using still higher ring temperatures (Trjng ~ 
1 MeV projected for the EBT-P device), methods of efficiently coupling power to 
the hot electrons are an important consideration.9 These results also point out the 
sensitivity of absorption to details of the distribution function, particularly deviations 
from a simple Maxwellian. 

We are encouraged by the agreement between calculations with the full disper-

sion relation and the Poynting theorem using cold plasma kr and E. In cir-

cumstances for which the relativistic plasma component is embedded in a nonrela-
tivistic component of equal or higher density, the Poynting theorem formulation 

0 

gives reasonably accurate results to well above 500 keV. This is much less 
demanding computationally than solving the full dispersion relation. We feel, there-
fore, that within the limits of WKB theory, our previous calculations of EBT ring 
absorption are correct. There are, of course, uncertainties as to whether any 
WKB-like theory can be applied to the EBT rings, where the perpendicular magnetic 
field scale length is not much greater than p and where particles with v|| — c see 
variations in magnetic field strength in a few gyroperiods by parallel flow. 

Figures 6 and 7 demonstrate the complicated interaction between the extraor-
dinary mode and the Bernstein mode at high temperature. Since both modes tend 
to be heavily damped near the coupling point it is not clear that these couplings are 
important for practical applications at relativistic temperatures. In any case, accu-
rate computation of mode conversion requires a full wave treatment, whictfUn this 
large k±pg regime would be extremely difficult. * 

Finally, we should comment on the computational requirements. Some effort 
has been expended in making the computation of Bessel functions and the numerical 
integrations run efficiently. Despite this effort, the code is quite expensive to run. 
This has discouraged us from investigating more general distribution functions or a 
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wider parameter space (e.g., n|| 0). There are, however, other formulations for 
the relativistic conductivity tensor that may have computational advantages over the 
cyclotron harmonic expansion used here. In particular, there is Trubnikov's original 
formulation mentioned in the introduction. Also, a formulation by Weitzner14 exists 
in which the sum over cyclotron harmonics is replaced by an integral over the order 
of a combination of Bessel functions. 
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