Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Characterization of fiberglass-filled diallyl phthalate plastic molding resins and molded parts

Technical Report ·
DOI:https://doi.org/10.2172/6803471· OSTI ID:6803471

Characterization of diallyl phthalate (DAP) molding resins was undertaken by differential scanning calorimetry (DSC) and by combined size exclusion chromatography (SEC)/low angle laser light scattering (LALLS) in order to better predict moldability and storage life limits. Completeness of cure of molded parts, before and after any post-curing, was also determined by thermal analysis. Molecular weights and molecular weight distributions of the DAP molding resins by SEC/LALLS indicated that the better molding resins have lower M/sub w//M/sub n/ ratios. Association effects were observed, which could not be overcome by solvent modification alone. Determination of DAP molding resin heats of reaction by DSC indicated a linear relation between ..delta..H/sub R/ and weight percent filler for the good molding resins. DSC analyses of molded DAP parts showed that 95% cure was achieved in some as-molded parts, with a post-cure temperature of 165/sup 0/C being required to complete the cure to 100%. Thickness of the parts was a factor, with the thicker parts being 100% cured as molded. The glass transition temperature (T/sub g/) of the molded parts increased as cure was completed, to approx. 160 to 165/sup 0/C maximum. These results are consistent with a model of thermoset resin curing behavior which states that 100% cure can be achieved only if a post-curing operation is conducted above the T/sub g infinity/ (T/sub g/ at complete cure) of the polymer.

Research Organization:
Mound Facility, Miamisburg, OH (USA)
DOE Contract Number:
AC04-76DP00053
OSTI ID:
6803471
Report Number(s):
MLM-2766
Country of Publication:
United States
Language:
English