High rate dry etching of GaN, AlN and InN in ECR Cl{sub 2}/CH{sub 4}/H{sub 2}/Ar plasmas
- Univ. of Florida, Gainesville, FL (United States)
- Sandia National Lab., Albuquerque, NM (United States)
Etch rates for binary nitrides in ECR Cl{sub 2}/CH{sub 4}/H{sub 2}/Ar are reported as a function of temperature, rf-bias, microwave power, pressure and relative gas proportions. GaN etch rates remain relatively constant from 30 to 125{degrees}C and then increase to a maximum of 2340 {angstrom}-min{sup {minus}1} at 170{degrees}C. The AlN etch rate decreases throughout the temperature range studied with a maximum of 960 {angstrom}-min{sup {minus}1} at 30{degrees}C. When CH{sub 4} is removed from the plasma chemistry, the GaN and InN etch rates are slightly lower, with less dramatic changes with temperature. The surface composition of the III-V nitrides remains unchanged over the temperatures studied. The GaN and InN rates increase significantly with rf power, and the fastest rates for all three binaries are obtained at 2 mTorr. Surface morphology is smooth for GaN over a wide range of conditions, whereas InN surfaces are more sensitive to plasma parameters.
- Research Organization:
- Sandia National Labs., Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE, Washington, DC (United States); National Science Foundation, Washington, DC (United States)
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 67760
- Report Number(s):
- SAND--95-0936C; CONF-950412--12; ON: DE95011872
- Country of Publication:
- United States
- Language:
- English
Similar Records
High rate electron cyclotron resonance etching of GaN, InN, and AlN
Selective dry etching of III-V nitrides in Cl{sub 2}/Ar, CH{sub 4}/H{sub 2}/Ar, ICi/Ar, and IBr/Ar