Infrared absorption properties of the EL2 and the isolated As/sub Ga/ defects in neutron-transmutation-doped GaAs: Generation of an EL2-like defect
The EL2 and the isolated As/sub Ga/ antisite defects in neutron-transmutation-doped (NTD) GaAs were studied by using the infrared (ir) absorption technique concurrent with thermal annealing. The results show that irradiation with low thermal-neutron doses partially decomposes the EL2 complex in semi-insulating (si) GaAs grown by the liquid-encapsulated Czochralski (LEC) growth technique. On the other hand, a small amount of EL2 is generated in as-grown Ga-rich undoped p-type LEC GaAs. The EL2 defect in low-dose thermal-neutron-irradiated samples (both si and p-type) was found to be stable up to 850 /sup 0/C. High neutron-irradiation doses, however, completely annihilate EL2 but generate a different EL2-like defect (DL2). The DL2 defect is observed after annealing the high-dose NTD samples for 6 min at 600 /sup 0/C. The DL2 concentration is observed to be larger than that of EL2 in as-grown LEC si GaAs by a factor of 2.3 or higher. The photoquenching and thermal recovery properties of DL2 and EL2 defects are identical. However, the DL2 defect does not exhibit the same thermal stability or the zero-phonon line of the EL2 defect. Thermal annealing kinetics shows that DL2 is composed of three point defects. The residual absorption (unquenchable component) after photoquenching the EL2 (DL2) defect is interpreted as the photoionization of the isolated As/sub Ga/ antisite.
- Research Organization:
- Materials Laboratory (AFWAL/MLPO), Air Force Wright Aeronautical
- OSTI ID:
- 6550382
- Journal Information:
- Phys. Rev. B: Condens. Matter; (United States), Journal Name: Phys. Rev. B: Condens. Matter; (United States) Vol. 39:5; ISSN PRBMD
- Country of Publication:
- United States
- Language:
- English
Similar Records
Neutron irradiation effects on the infrared absorption of the EL2 defect in GaAs: New interpretation for the intracenter transition
Influence of fast neutrons on electrical properties in neutron transmutation doped GaAs: New annealing stage
Related Subjects
360605* -- Materials-- Radiation Effects
ABSORPTION SPECTRA
ARSENIC COMPOUNDS
ARSENIDES
CRYSTAL DEFECTS
CRYSTAL STRUCTURE
DOPED MATERIALS
ELECTROMAGNETIC RADIATION
FUNCTIONS
GALLIUM ARSENIDES
GALLIUM COMPOUNDS
INFRARED RADIATION
MATERIALS
NEUTRONIC DAMAGE FUNCTIONS
PHYSICAL RADIATION EFFECTS
PNICTIDES
RADIATION EFFECTS
RADIATIONS
SPECTRA
TRANSMUTATION