Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Metabolism of the insecticidally active GABA sub A receptor antagonist 4-sec-(3,4- sup 3 H sub 2 )butyl-1-(4-cyanophenyl)-2,6,7-trioxabicyclo(2. 2. 2)octane

Journal Article · · Journal of Agricultural and Food Chemistry; (USA)
DOI:https://doi.org/10.1021/jf00093a055· OSTI ID:6524621

4-sec-(3,4-{sup 3}H{sub 2})Butyl-1-(4-cyanophenyl)-2,6,7-trioxabicyclo(2.2.2)octane (referred to as ({sup 3}H)COB) was examined as an example of a new class of insecticidally active compounds that block the {gamma}-aminobutyric acid gated chloride channel. Metabolites were identified by thin-layer cochromatography with standards from synthesis and by consideration of their hydrolytic and oxidative degradation products formed in situ on two-dimensional silica gel chromatoplates. Metabolism of ({sup 3}H)COB by mouse liver and housefly abdomen microsomes is dependent on fortification with NADPH. The O-methylene and sec-butyl sites are sensitive to oxidation. Each carbon of the sec-butyl group is individually functionalized with strong preference for the methylene site in the mouse but not the housefly microsomal system. O-Methylene hydroxylation initiates spontaneous cage opening to form an aldehyde that undergoes metabolic reduction, ultimately yielding the same cyanobenzoate ester of 2,2-bis-(hydroxymethyl)-3-methylpentan-1-ol formed by direct hydrolysis. Houseflies injected with ({sup 3}H)COB form many if not all of the same metabolites, with major products being the aforementioned cyanobenzoate, the orthoester oxidized at the sec-butyl methylene site, and polar conjugates.

OSTI ID:
6524621
Journal Information:
Journal of Agricultural and Food Chemistry; (USA), Journal Name: Journal of Agricultural and Food Chemistry; (USA) Vol. 38:3; ISSN 0021-8561; ISSN JAFCA
Country of Publication:
United States
Language:
English