Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

The influence of methane oxidation on the stable isotopic composition of methane emitted from Florida swamp forests

Journal Article · · Geochimica et Cosmochimica Acta; (United States)
;  [1];  [2]
  1. Florida State Univ., Tallahassee, FL (United States)
  2. North Carolina State Univ., Raleigh, NC (United States)
This study reports the first measurements of the [delta][sup 13]C of CH[sub 4] emitted from seasonally flooded swamp forests in the southeastern United States. The seasonally averaged [delta][sup 13]C of CH[sub 4] emitted from a north Florida swamp forest located in the St. Marks National Wildlife Refuge was -52.7 [+-] 6.11[per thousand] (error is [+-] one standard deviation throughout, n = 28), a value [sup 13]C-enriched, relative to typical wetland emissions. In an Everglades cypress dome, the average [delta][sup 13]C of emitted CH[sub 4] was -52.5 [+-] 6.7 [per thousand] (n = 3). Consistent with attenuation of CH[sub 4] emission by CH[sub 4] oxidation in these environments, CH[sub 4] emitted via diffusion from the St. Marks swamp forest was enriched in [sup 13]C by 6.4 [+-] 5.8 [per thousand] (n = 28) and D by 57 [+-] 36 [per thousand] (n = 6) relative to sedimentary CH[sub 4]. Emission experiments, performed in situ with inhibitors of aerobic CH[sub 4] oxidizing bacteria, were used to calculate the fractionation factors ([alpha]) for stable carbon and hydrogen isotopes of CH[sub 4] undergoing transport and oxidation. Values ranged from 1.003 to 1.021 and 1.050 to 1.129, respectively. The best estimates for carbon and hydrogen [alpha] values were 1.020 and 1.068, respectively. The [delta] values of produced (sedimentary) CH[sub 4] were relatively constant in the St. Marks subtropical swamp forest. Additionally, because the transport of CH[sub 4] to the atmosphere was dominated by molecular diffusion, variations in the magnitude of CH[sub 4] oxidation appeared to be the primary factor controlling the [delta] values of emitted CH[sub 4]. This contrasts with systems dominated by bubble ebullition, where variations in CH[sub 4] production mechanisms have been hypothesized to be the primary factor controlling the [delta] values of emitted CH[sub 4].
OSTI ID:
6487850
Journal Information:
Geochimica et Cosmochimica Acta; (United States), Journal Name: Geochimica et Cosmochimica Acta; (United States) Vol. 58:20; ISSN GCACAK; ISSN 0016-7037
Country of Publication:
United States
Language:
English