Ferromagnetic bulk amorphous alloys
- Tohoku Univ., Sendai (Japan). Inst. for Materials Research
This article reviews the authors recent results on the development of ferromagnetic bulk amorphous alloys prepared by casting processes. The multicomponent Fe-(Al,Ga)-(P,C,B,Si) alloys are amorphized in the bulk form with diameters up to 2 mm, and the temperature interval of the supercooled liquid region before crystallization is in the range of 50 to 67 K. These bulk amorphous alloys exhibit good soft magnetic properties, i.e., high B{sub s} of 1.1 to 1.2 T, low H{sub c} of 2 to 6 A/m, and high {mu}{sub e} of about 7,000 at 1 kHz. The Nd-Fe-Al and Pr-Fe-Al bulk amorphous alloys are also produced in the diameter range of up to 12 mm by the copper mold casting process and exhibit rather good hard magnetic properties, i.e., B{sub r} of about 0.1 T, high H{sub c} of 300 to 400 kA/m, and rather high (JH){sub max} of 13 to 20 kJ/m{sup 3}. The crystallization causes the disappearance of the hard magnetic properties. Furthermore, the melt-spun Nd-Fe-Al and Pr-Fe-Al alloy ribbons exhibit soft-type magnetic properties. Consequently, the hard magnetic properties are concluded to be obtained only for the bulk amorphous alloys. The Nd- and Pr-based bulk amorphous alloys can be regarded as a new type of clustered amorphous material, and the control of the clustered amorphous structure is expected to enable the appearance of novel functional properties which cannot be obtained for an ordinary amorphous structure.
- Sponsoring Organization:
- USDOE
- OSTI ID:
- 644323
- Report Number(s):
- CONF-970201--
- Journal Information:
- Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, Journal Name: Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science Journal Issue: 7 Vol. 29; ISSN 1073-5623; ISSN MMTAEB
- Country of Publication:
- United States
- Language:
- English
Similar Records
Hard magnetic properties of Fe-Nd-B alloys containing intergranular amorphous phase
Controlled solidification and magnetic properties of Pr-Fe-B-Cu and Nd-Fe-B alloys