Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Responses of deciduous trees to elevated atmospheric CO[sub 2]: Productivity, phytochemistry, and insect performance

Journal Article · · Ecology; (United States)
DOI:https://doi.org/10.2307/1940804· OSTI ID:6431712
; ;  [1]
  1. Univ. of Wisconsin, Madison (United States)
Rising levels of atmospheric carbon dioxide are expected to directly affect forest ecosystems. This research evaluated the effects of enriched CO[sub 2], on the productivity and phytochemistry of forest trees and performance of associated insects. Our experimental system consisted of three tree species (quaking aspen [Populus tremuloides], red oak [Quercus rubra], sugar maple [Acer saccharum]) and two species of leaf-feeding insects (gypsy moth [Lymantria dispar] and forest tent caterpillar [Malacosma disstria]). Three questions were evaluated: in response to enriched CO[sub 2]: (1) relative increases in tree growth rates (2) relative decreases in protein and increases in carbon-based compounds, and (3) relative reductions in insect performance. Aspen responded the most to enriched CO[sub 2], atmospheres whereas maple responded the least. Proportional growth increases, were highest for oak and least for maple. Effects of elevated CO[sub 2], on biomass allocation patterns differed among the three species. Enriched CO[sub 2], altered concentrations of primary and secondary metabolites in leaves, but the magnitude and direction of effects were species-specific. Consumption rates of insects fed high-CO[sub 2], aspen increased dramatically, but growth rates declined. Gypsy moths grew better on high-CO[sub 2], oak, whereas forest tent caterpillars were unaffected; tent caterpillars grew less on high-CO[sub 2], maple, while gypsy moths were unaffected. Changes in insect performance parameters were related to changes in foliar chemistry. This study illustrates that tree productivity and chemistry, and the performance of associated insects, will change under CO[sub 2], atmospheres predicted for the next century. Changes in higher level ecological processes, such as community structure and nutrient cycling, are also implicated. 61 refs., 3 figs., 2 tabs.
OSTI ID:
6431712
Journal Information:
Ecology; (United States), Journal Name: Ecology; (United States) Vol. 74:3; ISSN 0012-9658; ISSN ECOLAR
Country of Publication:
United States
Language:
English