skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Responses of deciduous trees to elevated atmospheric CO[sub 2]: Productivity, phytochemistry, and insect performance

Abstract

Rising levels of atmospheric carbon dioxide are expected to directly affect forest ecosystems. This research evaluated the effects of enriched CO[sub 2], on the productivity and phytochemistry of forest trees and performance of associated insects. Our experimental system consisted of three tree species (quaking aspen [Populus tremuloides], red oak [Quercus rubra], sugar maple [Acer saccharum]) and two species of leaf-feeding insects (gypsy moth [Lymantria dispar] and forest tent caterpillar [Malacosma disstria]). Three questions were evaluated: in response to enriched CO[sub 2]: (1) relative increases in tree growth rates (2) relative decreases in protein and increases in carbon-based compounds, and (3) relative reductions in insect performance. Aspen responded the most to enriched CO[sub 2], atmospheres whereas maple responded the least. Proportional growth increases, were highest for oak and least for maple. Effects of elevated CO[sub 2], on biomass allocation patterns differed among the three species. Enriched CO[sub 2], altered concentrations of primary and secondary metabolites in leaves, but the magnitude and direction of effects were species-specific. Consumption rates of insects fed high-CO[sub 2], aspen increased dramatically, but growth rates declined. Gypsy moths grew better on high-CO[sub 2], oak, whereas forest tent caterpillars were unaffected; tent caterpillars grew less on high-CO[sub 2],more » maple, while gypsy moths were unaffected. Changes in insect performance parameters were related to changes in foliar chemistry. This study illustrates that tree productivity and chemistry, and the performance of associated insects, will change under CO[sub 2], atmospheres predicted for the next century. Changes in higher level ecological processes, such as community structure and nutrient cycling, are also implicated. 61 refs., 3 figs., 2 tabs.« less

Authors:
; ;  [1]
  1. (Univ. of Wisconsin, Madison (United States))
Publication Date:
OSTI Identifier:
6431712
Resource Type:
Journal Article
Resource Relation:
Journal Name: Ecology; (United States); Journal Volume: 74:3
Country of Publication:
United States
Language:
English
Subject:
63 RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT.; CARBON DIOXIDE; BIOLOGICAL EFFECTS; ECOLOGICAL CONCENTRATION; DECIDUOUS TREES; ATMOSPHERIC CHEMISTRY; BIOCHEMISTRY; BIOMASS; ECOSYSTEMS; GROWTH; INSECTS; LEAVES; LYMANTRIA DISPAR; MAPLES; METABOLITES; MOTHS; OAKS; PLANTS; POPLARS; PRODUCTIVITY; SEEDLINGS; STARCH; ANIMALS; ARTHROPODS; CARBOHYDRATES; CARBON COMPOUNDS; CARBON OXIDES; CHALCOGENIDES; CHEMISTRY; ENERGY SOURCES; INVERTEBRATES; LEPIDOPTERA; MAGNOLIOPHYTA; MAGNOLIOPSIDA; ORGANIC COMPOUNDS; OXIDES; OXYGEN COMPOUNDS; POLYSACCHARIDES; REAGENTS; RENEWABLE ENERGY SOURCES; SACCHARIDES; TREES; 560300* - Chemicals Metabolism & Toxicology; 560400 - Other Environmental Pollutant Effects

Citation Formats

Lindroth, R.L., Kinney, K.K., and Platz, C.L.. Responses of deciduous trees to elevated atmospheric CO[sub 2]: Productivity, phytochemistry, and insect performance. United States: N. p., 1993. Web. doi:10.2307/1940804.
Lindroth, R.L., Kinney, K.K., & Platz, C.L.. Responses of deciduous trees to elevated atmospheric CO[sub 2]: Productivity, phytochemistry, and insect performance. United States. doi:10.2307/1940804.
Lindroth, R.L., Kinney, K.K., and Platz, C.L.. 1993. "Responses of deciduous trees to elevated atmospheric CO[sub 2]: Productivity, phytochemistry, and insect performance". United States. doi:10.2307/1940804.
@article{osti_6431712,
title = {Responses of deciduous trees to elevated atmospheric CO[sub 2]: Productivity, phytochemistry, and insect performance},
author = {Lindroth, R.L. and Kinney, K.K. and Platz, C.L.},
abstractNote = {Rising levels of atmospheric carbon dioxide are expected to directly affect forest ecosystems. This research evaluated the effects of enriched CO[sub 2], on the productivity and phytochemistry of forest trees and performance of associated insects. Our experimental system consisted of three tree species (quaking aspen [Populus tremuloides], red oak [Quercus rubra], sugar maple [Acer saccharum]) and two species of leaf-feeding insects (gypsy moth [Lymantria dispar] and forest tent caterpillar [Malacosma disstria]). Three questions were evaluated: in response to enriched CO[sub 2]: (1) relative increases in tree growth rates (2) relative decreases in protein and increases in carbon-based compounds, and (3) relative reductions in insect performance. Aspen responded the most to enriched CO[sub 2], atmospheres whereas maple responded the least. Proportional growth increases, were highest for oak and least for maple. Effects of elevated CO[sub 2], on biomass allocation patterns differed among the three species. Enriched CO[sub 2], altered concentrations of primary and secondary metabolites in leaves, but the magnitude and direction of effects were species-specific. Consumption rates of insects fed high-CO[sub 2], aspen increased dramatically, but growth rates declined. Gypsy moths grew better on high-CO[sub 2], oak, whereas forest tent caterpillars were unaffected; tent caterpillars grew less on high-CO[sub 2], maple, while gypsy moths were unaffected. Changes in insect performance parameters were related to changes in foliar chemistry. This study illustrates that tree productivity and chemistry, and the performance of associated insects, will change under CO[sub 2], atmospheres predicted for the next century. Changes in higher level ecological processes, such as community structure and nutrient cycling, are also implicated. 61 refs., 3 figs., 2 tabs.},
doi = {10.2307/1940804},
journal = {Ecology; (United States)},
number = ,
volume = 74:3,
place = {United States},
year = 1993,
month = 4
}
  • Increasing concentrations of atmospheric CO{sub 2} will interact with other environmental factors to influence the physiology and ecology of trees. This research evaluated how plant phytochemical responses to enriched atmospheric CO{sub 2} are affected by the availability of soil nitrate (NO{sub 3}{sup -}) and how these chemical changes alter performance of a tree-feeding folivore. Seedlings of three deciduous tree species were grown in ambient or elevated CO{sub 2} in combination with low or high soil NO{sub 3}{sup -} availability. Lymantria dispar larvae were reared on foliage (aspen and maple). Concentrations of nitrogen and soluble protein decreased, whereas concentrations of starch,more » condensed tannins, and ellagitannins increased, in response to elevated CO{sub 2} and/or low NO{sub 3}{sup -}. Responses of simple carbohydrates and phenolic glycosides were variable absolute (net) changes in foliar C:N ratios were greatest for aspen and least for oak, whereas relative changes were greatest for maple and least for aspen. Elevated CO{sub 2} treatments had little effect on gypsy moth development time, growth rate, or larval mass. Larvae reared on aspen foliage grown under elevated CO{sub 2} exhibited increased consumption but decreased conversion efficiencies. Gypsy moth responses to NO{sub 3}{sup -} were strongly host specific. The magnitude of insect response elicited by resource-mediated shifts in host chemistry will depend on how levels of compounds with specific importance to insect fitness are affected. Relatively few true interactions occured between carbon and nitrogen availability and insect performance. Tree species frequently interacted with CO{sub 2} and/or NO{sub 3}{sup -} availability to affect both parameters. The effects of elevated atmospheric CO{sub 2} on terrestrial plant communities will depend on species composition and soil nutrient availability. 54 refs., 9 figs., 4 tabs.« less
  • Elevated atmospheric CO{sub 2} concentrations have been predicted or shown to substantially influence plants, communities and ecosystems in a variety of ways. Here, we examined the effects of elevated CO{sub 2} levels on the timing and magnitude of flowering for two insect-pollinated annual plant species in a serpentine grassland. We focused on Lasthenia californica and Linanthus parviflorus and addressed three questions: (1) Do elevated CO{sub 2} levels influence flowering phenologies and is this species specific? (2) Do elevated CO{sub 2} levels affect flower production and is this due to altered numbers of individuals, flowers per plant, or both? and (3)more » Are effects on flowering due to elevated CO{sub 2} levels per se or changes in environmental conditions associated with methods used to manipulate CO{sub 2} levels? To address these questions, we used the ecosystem experiment at Stanford University`s Jasper Ridge Biological Preserve (San Mateo Co., CA). This system consists of 20 open-topped chambers - half receiving ambient CO{sub 2} (360 ppm) and half receiving elevated CO{sub 2} (720 ppm) - and 10 untreated plots serving as chamber controls. Results from the 1994 season demonstrated that there were species-specific responses to elevated CO{sub 2} levels and the field chambers. For Lasthenia californica, elevated CO{sub 2} per se did not affect relative abundance, inflorescence production, or phenology, but chambers did significantly increase inflorescence production and extend the duration of flowering. For Linanthus parviflorus, elevated CO{sub 2} levels significantly increased relative abundance and flower production, and extended the flowering period slightly, while the chambers significantly decreased flower production early in the season and increased it later in the season.« less
  • Ecosystem responses to elevated CO{sub 2} involve components that are difficult to resolve in spatially varying, intact systems. Depending on their functional similarity to the field, experimental microcosms may provide more uniform, accessible analogues. At Stanford University`s Jasper Ridge Biological Preserve, research on grassland responses to elevated CO{sub 2} combines field studies and microcosm experiments on annual communities established from seed. Parallel measurements from year 3 of CO{sub 2} treatments in the field and year 2 in the microcosms (after self-seeding) provide a test of their functional similarity. In both, nutrient-poor serpentine soils supported high plant density (>10,000 m{sup -2}),more » diverse phenology, and low aboveground production (100-200 g m{sup -2}). Elevated CO{sub 2} (720 ppm) favored late-flowering, taprooted annuals in both and had little or no effect on early annuals. Exotic species that were rare in field plots were lost from microcosms by year 2. Annual grasses contributed more to production in microcosms than in the field.« less