Existence, uniqueness and validation of parameter imbedding equations for nonlinear Fredholm integral equations
Technical Report
·
OSTI ID:6285507
A parameter imbedding method for nonlinear Fredholm integral equations produces a Cauchy system involving the solution of the integral equation and an associated resolvent kernel. For such Cauchy systems sufficient conditions are given to guarantee local existence and uniqueness of solutions. A Picard-type theorem utilizing a Lipschitz condition is obtained. This result then yields the validation of the Cauchy system.
- Research Organization:
- Sandia Labs., Albuquerque, NM (USA)
- DOE Contract Number:
- EY-76-C-04-0789
- OSTI ID:
- 6285507
- Report Number(s):
- SAND-78-1094
- Country of Publication:
- United States
- Language:
- English
Similar Records
Validation of an invariant embedding method for Fredholm integral equations
Invariant imbedding and the Fredholm integral equation
Fredholm equations and Green's functions
Technical Report
·
Fri Mar 31 23:00:00 EST 1978
·
OSTI ID:7017819
Invariant imbedding and the Fredholm integral equation
Journal Article
·
Fri Oct 31 23:00:00 EST 1975
· J. Math. Phys. (N.Y.), v. 16, no. 11, pp. 2207-2209
·
OSTI ID:4157629
Fredholm equations and Green's functions
Journal Article
·
Tue Dec 31 23:00:00 EST 1974
· Transp. Theory Stat. Phys.; (United States)
·
OSTI ID:7155100