Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Thermal analysis of reactions in soda-lime silicate glass batches containing melting accelerants: II, multicomponent systems

Journal Article · · Journal of the American Ceramic Society; (United States)
; ;  [1]
  1. New York State College of Ceramics at Alfred Univ., NY (United States)

The glass melting reactions in a multicomponent system (sand-soda ash-calcite-dolomite-feldspar) were studied using data from DTA, TGA, and XRD interactively. The first-formed liquid phase occurred at 700C from eutectic melting among CaCO[sub 3], Na[sub 2]CO[sub 3], and MgO. Further liquid phase formed at the CaCO[sub 3]-Na[sub 2]CO[sub 3] eutectic at 785C and a fusion reaction among SiO[sub 2], CaO, and the molten phase at 812C. Reactions between molten soda ash and silica grains to form a sodium disilicate coating also occurred in this temperature range. The effects of reaction accelerant additions (Na[sub 2], SO[sub 4], NaNO[sub 3], NaCl) on batch fusion were analyzed. Sodium chloride was found to be the most effective melting accelerant due to the formation of a NaCl-Na[sub 2]CO[sub 3] eutectic liquid phase at [approximately]636C, which effectively attacked the silica relic. CO[sub 2] gas release terminated [approximately]80C earlier with 1 wt% NaCl additions to the base glass.

OSTI ID:
6266298
Journal Information:
Journal of the American Ceramic Society; (United States), Journal Name: Journal of the American Ceramic Society; (United States) Vol. 76:3; ISSN 0002-7820; ISSN JACTAW
Country of Publication:
United States
Language:
English