Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Parallel computation of electromagnetic fields

Technical Report ·
DOI:https://doi.org/10.2172/620998· OSTI ID:620998

The DSI3D code is designed to numerically solve electromagnetics problems involving complex objects by solving Maxwell`s curl equations in the time-domain and in three space dimensions. The code has been designed to run on the new parallel processing computers as well as on conventional serial computers. The DSI3D code is unique for the following reasons: It runs efficiently on a variety of parallel computers, Allows the use of unstructured non-orthogonal grids, Allows a variety of cell or element types, Reduces to be the Finite Difference Time Domain (FDID) method when orthogonal grids are used, Preserves charge or divergence locally (and globally), Is non- dissipative, and Is accurate for non-orthogonal grids. This method is derived using a Discrete Surface Integration (DSI) technique. As formulated, the DSI technique can be used with essentially arbitrary unstructured grids composed of convex polyhedral cells. This implementation of the DSI algorithm allows the use of unstructured grids that are composed of combinations of non-orthogonal hexahedrons, tetrahedrons, triangular prisms and pyramids. This algorithm reduces to the conventional FDTD method when applied on a structured orthogonal hexahedral grid.

Research Organization:
Lawrence Livermore National Lab., CA (United States)
Sponsoring Organization:
USDOE, Washington, DC (United States)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
620998
Report Number(s):
UCRL-ID--127450; ON: DE98051059
Country of Publication:
United States
Language:
English

Similar Records

DSI3D-RCS: Theory manual
Technical Report · Wed Mar 15 23:00:00 EST 1995 · OSTI ID:102288

DSI3D - RCS user manual
Technical Report · Wed Aug 23 00:00:00 EDT 1995 · OSTI ID:120885

Local tetrahedron modeling of microelectronics using the finite-volume hybrid-grid technique
Technical Report · Thu Nov 30 23:00:00 EST 1995 · OSTI ID:201588