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Introduction
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,.

The DS13D code is designed to numerically solve electromagnetic problems involving
complex objects by solving Maxwell’s curl equations in the time-domain and in tie space
dimensions. The code has been designed to run on the new parallel processing computers
as well as on conventional serial computers.

The DS13D code is unique for the following n3asons:

. It runs efficiently on a variety of parallel computers,

● Allows the use of unstructured non-orthogonal grids,

. Allows a variety of cell or element types,

. Reduces to be the Finite Diffenmce Time Domain (FD’I’D)method when orthogonal
gIids are use~

. Preserves charge or divergence locally (and globally),

● Is non-dissipative,

● Is accurate for non-orthogonal grids.

This method is derived using a Qiscrete surface ~ntegration (DSI) technique. As
formulated the DSI technique can be used with essentially arbitrary unstructured grids
composed of convex polyhedral cells. This implementation of the DSI algorithm allows the
use of unstructured grids that are composed of combinations of non-orthogonal
hexahedrons, tetrahedrons, triangular prisms and pyramids. This algorithm reduces to the
conventional FDTD method when applied on a structured orthogonal hexahedral grid.
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Overview

Discrete Surface Integration Method

We begin by assuming that we wish to solve Maxwell’s curl equations on an irregular
three-dimensional domain R that has a boundary surface denoted by S. We will also
assume that the domain R has been discretized into convex polyhedrons. The figure below
shows a twisted waveguide discretized using hexahedral cells.

Twisted waveguide discretized using distorted hexahedral cells.

This is an example of a problem type that we wish to consider that could not be easily
solved using the conventional orthogonal grid FIND method. Maxwell’s curl equations are
given by

(1)

al
—=–VXE
C%

(2)

where for linear isotrcmic materials the vectors D, E, B and H are related by the
constitutiverelationship@

The linear isotropic
m, the permeability.

D=&E

B=/tH

material properties are: e, the permittivity, and

Like the conventional FDTD method, the DSI
methods can be generalized to treat more complex materials.
However, for the purposes of this discussion, we will assume that the
linear isotropic material properties are piecewise constant over the
domain R. We will also assume that S is a perfectly conducting
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surface, i.e., Em= O. This is sufficient to guarantee that the problem is

well-posed.

The DSI algorithm[l] is applicable for all unsmctured grids formed from convex
polyhedral cells. We restrict the choice of cell types to convex polyhedrons whose edges
are straight lines. The faces of the polyhedrons are not necessarily planar and we make the
assumption that any face in the assembled grid is shared by at most two cells. These am
v’W WA resrnctions and allow a great deal of flexibility.

The DSI method is complicated in that it tqrires the use of a dual @d[l]. There is a one-
tcs-onecorrespondence between the nodes, edges, faces, and cells of the primary grid to the
cells, faces, edges and nodes of the dual grid respectively. A dual face associated with a
primary edge has as its perimeter the dud edges associated with all of the prirnaty faces
which share the given primary edge. The dual cdl associated with a primary node has m its
surface the dual faces which correspond to all of the pnmaq edges which share the primary
node. The following figure shows an eight cell hexahedral primary grid and its one interior
dualcell. - -

A-.d- /

!.

/

/

------- -

Primary grid consisting of eight hexahedral cells and its one interior dual
cell.
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The DSI solution variables are associated with the edges and faces of the primary grid and
also with the edges and faces of the dual grid. The quantity associated with a primary cell
edge is the projection of the electric field vector onto that edge, i.e., E.s, wheres is the

primruy cell edge vector. The magnetic field projection H.s- is associated with a dual cell
edge where s“ is the dual cell edge vector. In addition, with each primary grid face we will
associate a full magnetic field vector B, and with each dual grid face we will associate a full
elecrnc displacement vector D. We will denote with an asterisk, *, geomernc quantities
associated with the dual grid. The following figure depicts these associaaons.

o

●

H .~* ~nd B Locations

E.~ @ D Locations

Dkcrete electric and magnetic field variable locations relative to the
primary and dual grid cells.

We remark that tltese associations of field quantities with the primary and dual grid
lccations ate entirely reciprocal and that the respective locations of the magnetic and electric
field quantities could be interchanged. The particular choice of which field quantities to
associate with each @d is best determined by deciding which field quantities one desires to
have on the exterior boundary surfaces where the boundary conditions will be imposed.
Since we are assuming that our domain R is surrounded by a perfect elecrnc conductor, we
will associate the elecrnc and magnetic field quantities as described above. For open region
problems, the choice for the location of the field quantities will depend on the particulm
radiation boundary condition algorithm used.

The basic algorithmic process used to advance in time the electric and magnetic field vectors
is rather straightforvmd. The following briefly describes the process for the magnetic field.

For a pardcular primary cell face, we define the area-nosmal vector to be N = ~n dS, where

n is a unit surface normal &fined by the right-hand rule in relation to a specified circulation
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mound the perimeter of the cell face. Using (2) for the primary grid face, F, we define the
dme derivative of the normal component of the magnetic field to be:

=I$EkdlF
(3)

upanon ~5Jauows tia .U..Ui .,w,.
magnetic field on a primmy face, F, fr
edges of that face. The last integral in
cd-- ~+-c~fific ~is can be done fox

- . ,-. . . .. . .. .++.:. A.. time derivative of ~e.nomd cOsnpOtkmt Of the
om the electric field projections onto the pctitnetcr
(3) is easily computed numerically by summing these

~a” ~.“,-- . . ... . . ... each primary cell face. From these projected time

derivatives, the full vector value of dB~/dt maybe computed. We will denote byFiJ, the
face of cellj (other than F) which sbarcs edge i. The following figure depic~ these
associations for a dual edge associated with a @nary face defked by five primary edges.

N
b

&

‘F42

v \\‘3,2

..

Cell 1

Cell 2

The primary grid faces used to time advance a magnetic field vector.
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At each of the P nodes of face F, we will unfold NCvector values dB~/dt by solving the

3 x 3 system of equations:

(4)

where i = 1,..., P, j =l,...,NC, and nz=(imodP)+l. For this primary face, F, which is

shared by NCprimary cells, there are P ZVcdifferent values of dB~/dt, which will now be

averaged or interpolated to form a single dll~ /dt vector for the face. The particular
averaging or interpolation we use is given by:

(5)

where the weight

Wti= ‘F “ (NFi,j x ‘Fi+u)’
represents the volume of thejth local coordinate system at node i of face F. We note also
that the weight wv is the determinant of the system of equations (4).

The full B vector for each primary face, F, may now be advanced in time using the time-
centered Ieapiiog algorithm:

(6)

where Dt is the specfled time step size. Finally, a time advanced value of the projection of

the magnetic field onto the dual edge, s*, which penetrates the primary cell face, F, is
easily obtained using

. k++ B&+*.s“
()H-s =

P’
(7)

where ~ is an appropriate permeability value.
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To time advance the electric field vectors which are associated with each dual cell face, we
proceed in a manner which is exactly “dual” to the magnetic field procedure described
above.

Equations (3)-(7) for the magnetic field quantities, and similar dual equations for the
electric field quantities constitute the divergence conserving DSI approximation method.

When orthogonal hexahedml based grids are used, many sirnpliilcations occur in the above
described algorithm. And in fac~ the DSI algorithm reduces to be the canonical Yee[2]
FDTD algorithm.

7



Parallel Processing and Problem
Partitioning

To efficiently use multiple processors on a parallel computer to solve any one problem, it is
required to split or partition the problem among the available processors. With the problem
partitione~ each processor can produce the solution for its part of the problem. In order
for this process to be efflcien~ there are to fundamental goals any partitioning process.

● Each processor should have an equal workload.

● The amount of inter-processor communication required should be minimized.

For DS13D, this partitioning ultimately divides up the primary and dual edge variables E”s

and H”s*. For some structured grids it is intuitively obvious how to partition the problem
so that the above stated goals are achieved. For unstructured grids and particularly for
tetrahedral based grids adequate pmitioning schemes are ve~ non-intuitive and difficult to
construct. Fortunately, recent work by Karypis and Kumar[7] and earlier work by H.
Simon[8] has produced some automatic approaches for solving this problem.

The new approach is embodied in the codes called METIS and PARMETIS[7]. The basic
approach comes from methods used to partition graphs which are associated with solution
processes for sparse matxix problems. The details of the M.ETIS approach as well as
comparisons with other approaches may be found in the above refenmces. For DS13D we
have chosen to use the grid cells as the basic quantities to be partitioned. This is primarily
done because thexe am significantly fewer cells than edges and faces in the primary and
dual grids. This results in a smaller and more efficient partitioning process.

First, a graph of the connectivity of the cells is constructed We choose to define that two
cells are connected as meaning that they shamta face (other possibilities are that they sham a
node or an edge). The nodes of the graph represent the gxidcells and the graph edges
which connect two nodes represent that the two cells sham a common face. This graph is
input to METIS which splits the graph into “n” pieces where n is the number of processors
we desire to use to solve the electromagnetic problem. METIS accomplishes this by
coarsening the graph by forming “maximal sets” by identifying sets of graph edges which
have no nodes in common. These edges are “removed” from the graph by coalescing the
two nodes which are associated with each identifkd edge. Thus, the graph size is reduced
effectively by a factor of 2. This is done successively until a resulting graph of small sim is
obtained. This small graph is then partitioned into n pieces using a spectral method[8]. The
coarsening process is then reversed and the smaller partition pieces am expanded repeatedly
until one reaches the original graph. This multi-level graph partitioning strategy has
resulted in partitioning speed increases of roughly a factor of 100.
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Boundary Conditions

_Wect Electric Qmductor (PEC) boundary conditions are some of the most commonly
used boundary conditions when modeling problems involving metallic objects. PEC
conditions require that the total tangential electric field be set to zero on the PEC surface.
This is easily accomplished because the tangential electric field components, E.s, live on
the boundary and we simply set E”s = Em = Ofor the total fieM.

l?erfect Magnetic Qmductor (PMC) symmetry plane boundary conditions are another
useful boundary condition for certain types of problems. They iiequently allow a problem
to be solved using a grid that is half as big as the full grid for the problem. These
conditions requixe that the total tangential magnetic field be set to zero on the specified
surface. We desire that these conditions be applied on the surface of the primary grid
which is usually where tangential electric field information is specified. We accomplish
this by using reflection principles and images which are inhenmt with this type of planar
boundary.

l@liation Boundary ~onditions @C) mean absolute necessity for computing
electromagnetic field values in open region problems. These conditions allow one to
truncate the grid at a reasonable distance tkom the scattmr and thus avoid having to
discretim extremely large volumes of space. These conditions are designed to allow
scatted EM wave to leave the computational region without signiilcant nflections.
Achieving good RBC conditions is ~sually a vefi nontrivial pn%ess and much mseamh has
been performed looking for better and better RBC algorithms.

The following RBCS are presently included in the code:

1) First order Higdon[3] (Mur[5])
2) Fmt order Liao[4]
3) Fmt order Taylor[6]
4) Modified second onkr Mur[5]
5) Second order Higdon
6) Semnd order Taylor
7) Second order Taylor-Higdon[6]

The modified form of the second order Mur RE3Cuses only stencil components which are
ncnmally directed into the problem space [6].

These boundary conditions have been chosen because their stencils allow efficient
communication on MPP machines and allow the user a moderate amount of freedom in
generating the grid. The Higdon and Mur boundary conditions are one-way wave
operators and the Taylor and Liao boundary conditions are Taylor series approximations
[6].
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This simple sounding approach actually works quite well in practice. There is mathematical
theory that states that if the original grid is connected that each of the produced sub-
partitions will also be connected. Stated another way, each processor will be working on a
single local sub-piece of the grid rather than on a few cells here and a few more horn
someplace distant in the grid. There is also theory that shows that the partitioning is close
to optimal as far as the communication requirements to. It also is guaranteed to produce
almost the same number of cells for each processor to process.
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Communication Strategy

Once each processor on the parallel computer has its sub-piece of the global grid defined,
the processor will be responsible for computing and/or updating all of the edge-based
variables which are associated with its piece of the grid. We note that there will be some
duplication due to the fact that faces and edges which exist on a partition boundary will
necessarily be shared with the other processor(s) which “owns” the cell(s) on the other side
of the partition boundary. In order for a processor to be able to update all of its variables it
will need have access to all of the other cells which sham nodes on the partition boundary.
The next figure shows a 2D grid with a partition boundary depicted as the heavy solid line.

Processor O Other Processors

Grid with processor partition depicted with heavy solid line

As each processor does not know in the begiming what cells or processom it may be
surrounded by, each processor must discover these relationships by communicating with
the other processors. The f~st step in this process is that each processor identifies all of its
own boundary nodes and elements. These nodes may be nodes which lie on the real
physical problem boundary or the partition boundary or both. This boundary-element data
is then successively sent to every other processor. At the same time as a processor sends
its boundary data it also ~ceives the boundary data from another prucessor. A processor
then compares its own boundary data with that obtained tlom another processor looking for
matches between the boundary node sets. When a match occurs, then data is stored
indicating which elements need to be sent to the other processor and also which elements
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need to be received from the other processor. This process is repeated n-1 times (where n
is the number of processors being used) as if the processors were comected in a “ring-like”
manner. After completion of the boundary identitlcation stage, each processor then actually
sends all of its elements to the individual processors who need to have them. Again at the
same time, a processor is receiving from the other processors all of the elements it requires.

Send Receive

E
1 02

1

0033

7/’
1 2

3

CMq+

Ringlike send/ receive communication order for
processor Oto discover neighboring cells belonging.-

At the conclusion of this boundary element exchange stage, each processor will now have
all of its original elements plus a layer of new elements which share its grid partition
boundaries. At this point each processor has all of the geometry data which will be
required to perform time step updates of all of its original edge and dual edge values. As a
final step in setting up the communication tables which will be mqired in the time stepping
update process, each processor must create a final communication table which lists all of
the actual edge and dual edge field values it must sendheceive to/from other processors.
This is readily generated from the previously generated boundary element exchange data.

FFG!

Extra cells (shaded) obtained by processor Ofrom neighboring processors.
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There is a somewhat subtle issue relating to obtaining the same msuks each time the code is
run for the same problem which must be addressed. Because more than one processur will
update edge values which lie on the grid partition boundaries, slightly different values for
the same edge may be generated by the different processors sharing the edge. This
possibility arises because even though they have identical geometxy information (node
coordinates and elements definitions), they may use a different ordering of the arithmetic
operations to compute a new edge value. Round-off errors will then cause slightly
diffe~nt values to be produced. When these different values are sent to other processors
through the message passing communication system, it is usually not feasible to control the
exact order in which messages arrive at another processor. As a result of this
asynchronous behavior, the same code can produce different answers each time it is run
even for the same problem.

This potentiaI randomness can be overcome by developing a unique “ownership” strategy
for all of the problem variables. We do this in a simple but effective way by decnxing that
an edge value is “owned” exclusively by the lowest numbered processor which shams the
edge. This processor’s value will then be the only value that will be used by any other
processor. This strategy insures that with a constant partition of the grid and a constant
number of processor being utilized for the solution process, identical results will be
obtained each time the problem is run. Changing the grid partitioning or the number of
processors being used may still give slightly different results.

13
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Vectorization

When using nonorthogonal unstructured grids, a heavy penalty in computational efficiency
can occur if sufficient care is not taken in structuring the computations and data. This will
occur primarily because the imer-most loops involve a gxeat deal of indirect addressing and
the data may be accessed in rather random patterns. The basic DS13D time stepping loops
consist of dot products of vector coefilcients with a vector of solution variables. These dot
products can and will vary in length and involve indirect addressing. These conditions
usually defeat most vectorizing compilers.

We have found that most of this difilcuhy can be easily overcome by reordering and
regrouping the data so that much of it lies consecutively in memory. We will rearrange the
data so that all of the data for dot products of the same length lie consecutively in memory.
The next diagram shows the original imer loop for updating the electric field edge projected
values. Next to it is shown the new inner loop restructured to gain mom efficiency.

‘Thesho~ variable length inner loops thatperform Sorting the variableupdateorderby loop length
the dot productslimit performanceon vector allowsdo-looporders to k exchangtx-Lleavingvery
computers long inner imps

do L=l, maxLLen

il = t%WHolLen(L)

doi=l, h.hn

hdot = O.

do j = ipth(i), ipth(i+l) -1

Mot = hdot + COdh(j)

*eds(npth@)

enddo

MS(i)= hds(i) - dt * Mot

i2 = fmfHofLen(L+l) -1

jl = ftiCofLen(L) - il

j2 = fmtHCofLen(L+l) - il -1

do j = jl, j2, HLengthCount(L)

doi=il, i2

hds(i) = hds(i) + coefh(i+j)

* eds(npth(i+j>)

enddo

enddo
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The performance improvement using this reordering and rearranging technique is dramatic.
On a Cray C-90 single cpu, the performance on the original loop was about 15-20
megaflops. The rearranged data loop now performs at about 307 megaflops. On the
Meiko CS-2 parallel processing computer the performance improves from about 5
megaflops to about 35 megaflops on each processor. We have even observed that the data
restructuring also improves (to a lesser extent) the performance on scalar CPUS for various
other machines.

The following table shows the basic computational speed(mflops) achieved on a variety of
platforms.

Machine Short Inner Long Inner
Loops Loops

SGI-R4000 3.3 4.3

Meiko Scalar 2.6 4.0

Meiko Vector 2.7 35.0

Paragon 2.6 4.3

CrayT3D 5.4 6.7

(hay C90 20.0 307.0

Parallel Scaling

There are differing approaches as to how best to determine how efficient a particular code
or algorithm performs on a parallel computer. For single cpu computers, the situation is
reasonably straightforward - you can simply measure the length of time it takes to solve the
problem. Of course you must take into account things such as how much memory is
required, how the local cache is being utilized, how much input/output is requirtxl etc.

For parallel computers all of the above mentioned items are issues and in addition one must
assess how much time penalty accrues as a result of the communication that must occur
between processors. Life is simplest if all processors are doing exactly the same thing and
they have exactly the same amount of work to perform. In reality this is almost never the
case, diffenmt materials or different boundary conditions in diiTerent parts of the problem
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are likely to cause some processors to have more computations to perform than others.
Some processors may have mo~ communications to perform than others.

For electromagnetic problems posed in the time domain, communication between
processors must occur at least once and often twice per time step taken. RBC boundary
condition computational demands are notoriously much greater than those for closed region
problems involving only PEC boundaries. Significant load imbalances can easily occur. In
general, the most dominant effects for efilciency many problems nxult from the initial
mesh partitioning. This partition determines the relative amount of &ta that must be
communicated versus the amount of typical floating point computation that must be
perfoxmed by the processor. Geometrically speaking, the partitioned subdomains should
have a very low surface to volume mtio - the surface being proportional to the amount of
communication that must take place and the volume proportional to the amount of floating
point computation.

For a fixed size problem, trying to solve it using more and mom processors inevitably leads
to larger surface to volume ratios for the sub-domains - and hence - inefficiency. In the
scaling results (speedup vs. processors) that are presented below, this is clearly
demonstrated. The goal in solving any particular problem should be to determine an optimal
number of processors to use to solve the problem. By performing scaling studies of this
type one can determine what a reasonable number of processors to use may be. This will be
determined by the user by his specifying an efficiency level that is acceptable for his
problem.

The problem used for determining the speedup was a twisted waveguide problem with a
grid structure similar to the grid pictures above. Three different problem sizes wexe solved
with increasing numbers of processom. As is clearly evident, the larger problem is solved
with greater efficiency than the smaller problems.

150

%100

al

g 50

0

-

.

m

o 50 100 150

Number of Processors

+ Perf ect
.....*....., 2*K

ii,. 64K
,....~ .....3~K

F]gure: Plot of speedup versus number of processors
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In general we know that having more zones per problem generally results in better
efficiencies. Another way to assess how many processors to use to solve a problem is to
consider the data (for the pnwiously described problems) presented in the scatter-graph
below which shows the “cost” per solution unknown versus the number of zones per
processor.

2.5 -r

Zones I Processor

Figure showing the cost/unknown versus the zones per processor.

Clearly, problem setups involving larger numbers of unknowns per processor are more
efficient. The diffemmces between these problems are not as great as can frequently occur
for other types of problems (particularly those involving RBCS). For abroad range of time
domain electmmagnetics problems we have found that having a minimum of several
thousand grid cells per processor will result in acceptable performance for the computers
that we have experienced.
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Post-Processing

Post-processing for DS13D is somewhat different than for many other codes. This is in
part due to the fact that full electric and magnetic field vectors are almost never computed in
the code as a part of the basic solution algorithm. Rather, projected field values onto
@TMXY@d ~d dud grid edges are the basic quantities computed and used in DS13D.
Also, since DS13D has been designed as a parallel computer code, the data does not reside
all in one place in that it is distributed across many processors. Another fact is that there is
very little in the way of parallel graphics softwans available on almost any of the parallel
computers. Work is in progress in this area and hopefully parallel graphics capabilities will
exist and allow increased speeds and capabilities for data display.

The philosophy that we have adopted is that we will do all graphics post-processing not on
the parallel computer but rather on workstations. This has several important implications.
First, since the performance and capacity on most workstations is rather limited as
compared to the parallel computer, it may not be possible to visualize all of the data together
in one place at one time. Second, we will be required to develop software which will run
on the parallel computer which will form and extract the data we desire to visualize.

We have developed a parallel post-processing tool called DS13DI0 which performs the
required tasks. When DS13D is run on a parallel computer, it will produce nxtart dump
files which contain the edge and dual edge &ta. These files will exist on the sepamte
processors and/or their local disk space. When DS13DI0 runs, it will read the original grid
files and extract sup-pieces of the original grid as specified by the user. These sub-pieces
may be planar cuts through the grid or particular material types. For the grid sub-pieces,
DS13DI0 then uses the data in the restart files to build or interpolate full vector field data
which will exist at the nodes of the grid sub-pieces. The code will then produce a reduced
ascii grid file (which contains only the boundary ceils of the region specified by the user)
and ascii files containing the vector field data for this reduced grid. Currently, one can
form electric field vectors, magnetic field vectors and Poynting vector field data. This data
which will be much smaller than the enthe problem data is then moved to a workstation and
can be visualized with many different graphics software packages.
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