N

UCRL-ID-127450

Parallel Computation of Electromagnetic Fields

N. K. Madsen

May 21, 1997

This is an informal report intended primarily for internal or limited external
distribution. The opinions and conclusions stated are those of the author and may or
may not be those of the Laboratory.

Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract W-7405-ENG-48.

o

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of treir
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Rd.,
Springfield, VA 22161

Parallel Computation of
Electromagnetic Fields

1111111

!!!!!!!!!!

111111111111
11111111111

May 21, 1997

Niel Madsen

Lawrence Livermore National Laboratory

Table of Contents

INTRODUCTION

OVERVIEW

BOUNDARY CONDITIONS

PARALLEL PROCESSING AND PROBLEM PARTITIONING
COMMUNICATION STRATEGY

VECTORIZATION

PARALLEL SCALING

POST-PROCESSING

REFERENCES

11

14

15

18

19

Introduction

The DSI3D code is designed to numerically solve electromagnetics problems involving
complex objects by solving Maxwell's curl equations in the time-domain and in three space
dimensions. The code has been designed to run on the new parallel processing computers
as well as on conventional serial computers.

The DSI3D code is unique for the following reasons:

e It runs efficiently on a variety of parallel computers,
e Allows the use of unstructured non-orthogonal grids,
¢ Allows a variety of cell or element types,

e Reduces to be the Finite Difference Time Domain (FDTD) method when orthogonal
grids are used,

e Preserves charge or divergence locally (and globally),
o Is non-dissipative,

e Is accurate for non-orthogonal grids.

This method is derived using a Discrete Surface Integration (DSI) technique. As
formulated, the DSI technique can be used with essentially arbitrary unstructured grids
composed of convex polyhedral cells. This implementation of the DSI algorithm allows the
use of unstructured grids that are composed of combinations of non-orthogonal
hexahedrons, tetrahedrons, triangular prisms and pyramids. This algorithm reduces to the
conventional FDTD method when applied on a structured orthogonal hexahedral grid.

Overview

Discrete Surface Integration Method

We begin by assuming that we wish to solve Maxwell’s curl equations on an irregular
three-dimensional domain R that has a boundary surface denoted by S. We will also
assume that the domain R has been discretized into convex polyhedrons. The figure below
shows a twisted waveguide discretized using hexahedral cells.

IOR0000sssrsornrsconsssnniss vaol
IS8R0 0seencnscnasssanarsssse]
JIIIII LA IO P OB PORLORINSIERNE > # 4
deogpasssrossassessassames sy sy

Twisted waveguide discretized using distorted hexahedral cells.

This is an example of a problem type that we wish to consider that could not be easily
solved using the conventional orthogonal grid FDTD method. Maxwell’s curl equations are
given by:

%?:Vxn (1)
9B
ot

where for linear isotropic materials the vectors D, E, B and H are related by the
constitutive relationships

=-VxE (2)

D=¢E
B=uH

The linear isotropic material properties are: e, the permittivity, and
m, the permeability. Like the conventional FDTD method, the DSI
methods can be generalized to treat more complex materials.
However, for the purposes of this discussion, we will assume that the
linear isotropic material properties are piecewise constant over the
domain R. We will also assume that § is a perfectly conducting

surface, i.e., E,_=0. This is sufficient to guarantee that the problem is
well-posed.

The DSI algorithm[1] is applicable for all unstructured grids formed from convex
polyhedral ceils. We restrict the choice of cell types to convex polyhedrons whose edges
are straight lines. The faces of the polyhedrons are not necessarily planar and we make the

assumption that any face in the assembled grid is shared by at most two cells. These are
very weak restrictions and allow a great deal of flexibility.

The DSI method is complicated in that it requires the use of a dual grid[1]. There is a one-
to-one correspondence between the nodes, edges, faces, and cells of the primary grid to the
cells, faces, edges and nodes of the dual grid, respectively. A dual face associated with a
primary edge has as its perimeter the dual edges associated with all of the primary faces
which share the given primary edge. The dual cell associated with a primary node has as its
surface the dual faces which correspond to all of the primary edges which share the primary

node. The following figure shows an eight cell hexahedral primary grid and its one interior
dual cell.

N\

Primary grid consisting of eight hexahedral cells and its one interior dual
cell,

¢ DSI solution variables are associated with the edges and faces of the primary grid and
also with the edges and faces of the dual grid. The quannty associated with a primary cell

edge is the pro J ection of the electric field vector onto that edgc ie., E-s, where s is the
I edge vector. The magnetic field projection H- -§" is associated with a dual cell

I ojectio

1al cell edge vector. In addition, v with each primary grid face we will

ull magnetic field vector B, and with each dual grid face we will associate a full
ement vector D. We will denote with an asterisk, * geomctnc quantities

m
the dual grid. The following figure depicts these assoc1anons

727 (DualCel)
W o > g
TR

nary Cell. 7 NNNNNNNN\WZ44

y
\ AR\
A e

- Wf

_ e PR i] i
S dlid b LU
A - o ™ 1 o onmd} o o om
W E*S adna v LoCdlolls

Discrete electric and magnetic field variable locations relative to the
primary and dual grid celis.

Since we are assuming that our domain R is surrounded by a perfect electric conductor, we
will associate the electric and magnetic field quantities as described above. ror open regwn
problems, the choice for the locanon of the field quantities will depend on the particular
radiation boundary condition algorithm used.

H Toane

The basic algorithmic process used to advance in time the electric and magnetic field vectors
is rather straightforward. The following briefly describes the process for the magnetic field.
~

or a particular primary cell face, we define the area-normal vector to be N= r" dS, where
n is a unit surface normal defined by the right-hand rule in relation to a specmca circulation

e derivative of the normal component of the magnetic field to be:

around the perimeter of the cell face. Using (2) for the primary grid face, F, we define the

.

o~

(28]
S
7
=
=
—
-
&2
X -
L> E
S
-
—=
| Sty
1] [
%2
Vo ulf/
=
w)
o e}
S
—
i
L
Z,

alem ala
uic Cioy

e derivative

(4V]
®
(&)
N _
o
J|
1 g
S V/
Y
i
F A
‘
\‘ o
o L
=
\

Ll

At each of the P nodes of face F, we will unfold N, vector values dB; /dt by solving the
33 system of equations:

;, ‘N =_§EI:
By Ny, =—$E*-a @)
Fiy

dBk
—L.Np_ =- §E"-dl
F-.i

where i =1,...,P, j=1,...,N,, and m=(imodP)+ 1. For this primary face, F, which is
shared by N, primary cells, there are PN, different values of dB: / dt, which will now be

averaged or interpolated to form a single dB} /dt vector for the face. The particular
averaging or interpolation we use is given by:

o S

J=l l=1 (5)

at zzlw |

J=l =l

where the weight

w; = Ng '(NFu X N,w),

represents the volume of the jth local coordinate system at node i of face F. We note also
that the weight wjj is the determinant of the system of equations (4).

The full B vector for each primary face, F, may now be advanced in time using the time-
centered leapfrog algorithm:

k
B =B+ Arde- 6
dt ’
where D is the specified time step size. Finally, a time advanced value of the projection of

the magnetic field onto the dual edge, s , which penetrates the primary cell face, F, is
easily obtained using:

k+d e
(H.s‘)’”i = B s , (7)
u

where JL is an appropriate permeability value.

To time advance the electric field vectors which are associated with each dual cell face, we
proceed in a manner which is exactly “dual” to the magnetic field procedure described
above. '

Equations (3)-(7) for the magnetic field quantities, and similar dual equations for the
electric field quantities constitute the divergence conserving DSI approximation method.

When orthogonal hexahedral based grids are used, many simplifications occur in the above
described algorithm. And in fact, the DSI algorithm reduces to be the canonical Yee{2]
FDTD algorithm.

Parallel Processing and Problem
Partitioning

To efficiently use multiple processors on a parallel computer to solve any one problem, it is
required to split or partition the problem among the available processors. With the problem
partitioned, each processor can produce the solution for its part of the problem. In order
for this process to be efficient, there are to fundamental goals any partitioning process.

» Each processor should have an equal workload.
 The amount of inter-processor communication required should be minimized.

For DSI3D, this partitioning ultimately divides up the primary and dual edge variables E-s

and H-s". For some structured grids it is intuitively obvious how to partition the problem
so that the above stated goals are achieved. For unstructured grids and particularly for
tetrahedral based grids adequate partitioning schemes are very non-intuitive and difficult to
construct. Fortunately, recent work by Karypis and Kumar(7] and earlier work by H.
Simon[8] has produced some automatic approaches for solving this problem.

The new approach is embodied in the codes called METIS and PARMETIS[7]. The basic
approach comes from methods used to partition graphs which are associated with solution
processes for sparse matrix problems. The details of the METIS approach as well as
comparisons with other approaches may be found in the above references. For DSI3D we
have chosen to use the grid cells as the basic quantities to be partitioned. This is primarily
done because there are significantly fewer cells than edges and faces in the primary and
dual grids. This results in a smaller and more efficient partitioning process.

First, a graph of the connectivity of the cells is constructed. We choose to define that two
cells are connected as meaning that they share a face (other possibilities are that they share a
node or an edge). The nodes of the graph represent the grid cells and the graph edges
which connect two nodes represent that the two cells share a common face. This graph is
input to METIS which splits the graph into “n” pieces where n is the number of processors
we desire to use to solve the electromagnetics problem. METIS accomplishes this by
coarsening the graph by forming “maximal sets” by identifying sets of graph edges which
have no nodes in common. These edges are “removed” from the graph by coalescing the
two nodes which are associated with each identified edge. Thus, the graph size is reduced
effectively by a factor of 2. This is done successively until a resulting graph of small size is
obtained. This small graph is then partitioned into n pieces using a spectral method[8]. The
coarsening process is then reversed and the smaller partition pieces are expanded repeatedly
until one reaches the original graph. This multi-level graph partitioning strategy has
resulted in partitioning speed increases of roughly a factor of 100.

Boundary Conditions

Perfect Electric Conductor (PEC) boundary conditions are some of the most commonly
used boundary conditions when modeling problems involving metallic objects. PEC
conditions require that the total tangential electric field be set to zero on the PEC surface.
This is easily accomplished because the tangential electric field components, E -s, live on
the boundary and we simply set E-s= E_, =0 for the total field.

Perfect Magnetic Conductor (PMC) symmetry plane boundary conditions are another
useful boundary condition for certain types of problems. They frequently allow a problem
to be solved using a grid that is half as big as the full grid for the problem. These
conditions require that the total tangential magnetic field be set to zero on the specified
surface. We desire that these conditions be applied on the surface of the primary grid
which is usually where tangential electric field information is specified. We accomplish
this by using reflection principles and images which are inherent with this type of planar
boundary.

Radiation Boundary Conditions (RBC) are an absolute necessity for computing
electromagnetic field values in open region problems. These conditions allow one to
truncate the grid at a reasonable distance from the scatterer and thus avoid having to
discretize extremely large volumes of space. These conditions are designed to allow
scattered EM wave to leave the computational region without significant reflections.
Achieving good RBC conditions is usually a very nontrivial process and much research has
been performed looking for better and better RBC algorithms.

The following RBCs are presently included in the code:

1) First order Higdon[3] (Mur[5])
2) First order Liao{4]

3) First order Taylor{6]

4) Modified second order Mur{5}
5) Second order Higdon

6) Second order Taylor

7) Second order Taylor-Higdon[6]

The modified form of the second order Mur RBC uses only stencil components which are
normally directed into the problem space [6].

These boundary conditions have been chosen because their stencils allow efficient
communication on MPP machines and allow the user a moderate amount of freedom in
generating the grid. The Higdon and Mur boundary conditions are one-way wave
operators and the Taylor and Liao boundary conditions are Taylor series approximations

[6].

This simple sounding approach actually works quite well in practice. There is mathematical
theory that states that if the original grid is connected that each of the produced sub-
partitions will also be connected. Stated another way, each processor will be working on a
single local sub-piece of the grid rather than on a few cells here and a few more from
someplace distant in the grid. There is also theory that shows that the partitioning is close
to optimal as far as the communication requirements to. It also is guaranteed to produce
almost the same number of cells for each processor to process.

10

Communication Strategy

Once each processor on the parallel computer has its sub-piece of the global grid defined,
the processor will be responsible for computing and/or updating all of the edge-based
variables which are associated with its piece of the grid. We note that there will be some
duplication due to the fact that faces and edges which exist on a partition boundary will
necessarily be shared with the other processor(s) which "owns” the cell(s) on the other side
of the partition boundary. In order for a processor to be able to update all of its variables it
will need have access to all of the other cells which share nodes on the partition boundary.
The next figure shows a 2D grid with a partition boundary depicted as the heavy solid line.

Processor 0 cher Processors

Grid with processor partition depicted with heavy solid line

As each processor does not know in the beginning what cells or processors it may be
surrounded by, each processor must discover these relationships by communicating with
the other processors. The first step in this process is that each processor identifies all of its
own boundary nodes and elements. These nodes may be nodes which lie on the real
physical problem boundary or the partition boundary or both. This boundary-element data
is then successively sent to every other processor. At the same time as a processor sends
its boundary data it also receives the boundary data from another processor. A processor
then compares its own boundary data with that obtained from another processor looking for
matches between the boundary node sets. When a match occurs, then data is stored
indicating which elements need to be sent to the other processor and also which elements

11

need to be received from the other processor. This process is repeated n-1 times (where n
is the number of processors being used) as if the processors were connected in a "ring-like"
manner. After completion of the boundary identification stage, each processor then actually
sends all of its elements to the individual processors who need to have them. Again at the
same time, a processor is receiving from the other processors all of the elements it requires.

Send Receive

© ©) T//@
I&:@

Ringlike send / receive communication order for
processor 0 to discover neighboring cells belonging

At the conclusion of this boundary element exchange stage, each processor will now have
all of its original elements plus a layer of new elements which share its grid partition
boundaries. At this point each processor has all of the geometry data which will be
required to perform time step updates of all of its original edge and dual edge values. Asa
final step in setting up the communication tables which will be required in the time stepping
update process, each processor must create a final communication table which lists all of
the actual edge and dual edge field values it must send/receive to/from other processors.
This is readily generated from the previously generated boundary element exchange data.

Extra cells (shaded) obtained by processor 0 from neighboring processors.

12

There is a somewhat subtle issue relating to obtaining the same results each time the code is
run for the same problem which must be addressed. Because more than one processor will
update edge values which lie on the grid partition boundaries, slightly different values for
the same edge may be generated by the different processors sharing the edge. This
possibility arises because even though they have identical geometry information (node
coordinates and elements definitions), they may use a different ordering of the arithmetic
operations to compute a new edge value. Round-off errors will then cause slightly
different values to be produced. When these different values are sent to other processors
through the message passing communication system, it is usually not feasible to control the
exact order in which messages arrive at another processor. As a result of this
asynchronous behavior, the same code can produce different answers each time it is run
even for the same problem.

This potential randomness can be overcome by developing a unique “ownership" strategy
for all of the problem variables. We do this in a simple but effective way by decreeing that
an edge value is "owned" exclusively by the lowest numbered processor which shares the
edge. This processor's value will then be the only value that will be used by any other
processor. This strategy insures that with a constant partition of the grid and a constant
number of processor being utilized for the solution process, identical results will be
obtained each time the problem is run. Changing the grid partitioning or the number of
processors being used may still give slightly different results.

13

Vectorization

When using nonorthogonal unstructured grids, a heavy penalty in computational efficiency
can occur if sufficient care is not taken in structuring the computations and data. This will
occur primarily because the inner-most loops involve a great deal of indirect addressing and
the data may be accessed in rather random patterns. The basic DSI3D time stepping loops
consist of dot products of vector coefficients with a vector of solution variables. These dot
products can and will vary in length and involve indirect addressing. These conditions
usually defeat most vectorizing compilers.

We have found that most of this difficulty can be easily overcome by reordering and
regrouping the data so that much of it lies consecutively in memory. We will rearrange the
data so that all of the data for dot products of the same length lie consecutively in memory.
The next diagram shows the original inner loop for updating the electric field edge projected
values. Next to it is shown the new inner loop restructured to gain more efficiency.

The short, variable length inner loops that perform Sorting the variable update order by loop length
the dot products limit performance on vector allows do-loop orders to be exchanged, leaving very
computers long inner loops

doL =1, maxLLen

i1 = firstHolLen(L)

doi=1,hLen i2 = firstHofLen(L+1) - 1

hdot = 0. j1 = firstHCofLen(L) - il

do j = ipth(i), ipth(i+1) - 1 j2 = firstHCofLen(L+1) - i1 - 1

hdot = hdot + coefh(j) do j = jl, j2, HLengthCount(L)
*eds(npth(j)) doi=il,i2

enddo hds(i) = hds(i) + coefh(i+j)

hds(i) = hds(i) - dt * hdot * eds(npth(i+j))
enddo enddo

enddo
enddo

14

The performance improvement using this reordering and rearranging technique is dramatic.
On a Cray C-90 single cpu, the performance on the original loop was about 15-20
megaflops. The rearranged data loop now performs at about 307 megaflops. On the
Meiko CS-2 parallel processing computer the performance improves from about 5
megaflops to about 35 megaflops on each processor. We have even observed that the data
restructuring also improves (to a lesser extent) the performance on scalar CPUs for various
other machines.

The following table shows the basic computational speed(mflops) achieved on a variety of
platforms.

Machine Short Inner Long Inner
Loops Loops
SGI-R4000 3.3 4.3
Meiko Scalar 2.6 4.0
Meiko Vector 2.7 35.0
Paragon 2.6 4.3
Cray T3D 54 6.7
Cray C90 20.0 307.0

Parallel Scaling

There are differing approaches as to how best to determine how efficient a particular code
or algorithm performs on a parallel computer. For single cpu computers, the situation is
reasonably straightforward - you can simply measure the length of time it takes to solve the
problem. Of course you must take into account things such as how much memory is
required, how the local cache is being utilized, how much input/output is required, etc.

For parallel computers all of the above mentioned items are issues and in addition one must
assess how much time penalty accrues as a result of the communication that must occur
between processors. Life is simplest if all processors are doing exactly the same thing and
they have exactly the same amount of work to perform. In reality this is almost never the
case, different materials or different boundary conditions in different parts of the problem

15

are likely to cause some processors to have more computations to perform than others.
Some processors may have more communications to perform than others.

For electromagnetic problems posed in the time domain, communication between
processors must occur at least once and often twice per time step taken. RBC boundary
condition computational demands are notoriously much greater than those for closed region
problems involving only PEC boundaries. Significant load imbalances can easily occur. In
general, the most dominant effects for efficiency many problems result from the initial
mesh partitioning. This partition determines the relative amount of data that must be
communicated versus the amount of typical floating point computation that must be
performed by the processor. Geometrically speaking, the partitioned sub-domains should
have a very low surface to volume ratio - the surface being proportional to the amount of
communication that must take place and the volume proportional to the amount of floating
point computation.

For a fixed size problem, trying to solve it using more and more processors inevitably leads
to larger surface to volume ratios for the sub-domains - and hence - inefficiency. In the
scaling results (speedup vs. processors) that are presented below, this is clearly
demonstrated. The goal in solving any particular problem should be to determine an optimal
number of processors to use to solve the problem. By performing scaling studies of this
type one can determine what a reasonable number of processors to use may be. This will be
determined by the user by his specifying an efficiency level that is acceptable for his
problem.

The problem used for determining the speedup was a twisted waveguide problem with a
grid structure similar to the grid pictures above. Three different problem sizes were solved
with increasing numbers of processors. As is clearly evident, the larger problem is solved
with greater efficiency than the smaller problems.

150 +
—4— Perfect
----- 128K
& 64K
----- - 32K

0 50 100 150
Number of Processors

Figure: Plot of speedup versus number of processors

16

In general we know that having more zones per problem generally results in better
efficiencies. Another way to assess how many processors to use to solve a problem is to
consider the data (for the previously described problems) presented in the scatter-graph
below which shows the “cost” per solution unknown versus the number of zones per
Processor.

2.5

»
4 ¢

Cost (arbitrary units)

o } t }
0 2000 4000 6000 8000

Zones / Processor

Figure showing the cost/unknown versus the zones per processor.

Clearly, problem setups involving larger numbers of unknowns per processor are more
efficient. The differences between these problems are not as great as can frequently occur
for other types of problems (particularly those involving RBCs). For a broad range of time
domain electromagnetics problems we have found that having a minimum of several
thousand grid cells per processor will result in acceptable performance for the computers
that we have experienced.

17

Post-Processing

Post-processing for DSI3D is somewhat different than for many other codes. This is in
part due to the fact that full electric and magnetic field vectors are almost never computed in
the code as a part of the basic solution algorithm. Rather, projected field values onto
primary grid and dual grid edges are the basic quantities computed and used in DSI3D.
Also, since DSI3D has been designed as a parallel computer code, the data does not reside
all in one place in that it is distributed across many processors. Another fact is that there is
very little in the way of parallel graphics software available on almost any of the parallel
computers. Work is in progress in this area and hopefully parallel graphics capabilities will
exist and allow increased speeds and capabilities for data display.

The philosophy that we have adopted is that we will do all graphics post-processing not on
the parallel computer but rather on workstations. This has several important implications.
First, since the performance and capacity on most workstations is rather limited as
compared to the parallel computer, it may not be possible to visualize all of the data together
in one place at one time. Second, we will be required to develop software which will run
on the parallel computer which will form and extract the data we desire to visualize.

We have developed a parallel post-processing tool called DSI3DIO which performs the
required tasks. When DSI3D is run on a parallel computer, it will produce restart dump
files which contain the edge and dual edge data. These files will exist on the separate
processors and/or their local disk space. When DSI3DIO runs, it will read the original grid
files and extract sup-pieces of the original grid as specified by the user. These sub-pieces
may be planar cuts through the grid or particular material types. For the grid sub-pieces,
DSI3DIO then uses the data in the restart files to build or interpolate full vector field data
which will exist at the nodes of the grid sub-pieces. The code will then produce a reduced
ascii grid file (which contains only the boundary cells of the region specified by the user)
and ascii files containing the vector field data for this reduced grid. Currently, one can
form electric field vectors, magnetic field vectors and Poynting vector field data. This data
which will be much smaller than the entire problem data is then moved to a workstation and
can be visualized with many different graphics software packages.

18

References

1. N.K. Madsen, “Divergence Preserving Discrete Surface Integral Methods for Maxwell’s
gux} Eq\;agtions Using Non-orthogonal Unstructured Grids”, J. Comp. Phys., 119, pp.
4-45, 1995.

2.K.S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s
quations in isotropic media,”/EEE Trans. Antennas Propag. AP-14(3), pp. 302-307,
(1966).

3. R.L. Higdon, "Numerical Absorbing Boundary Conditions for the Wave Equations”,
Math. of Comput., Vol. 49, pp. 65-91, July 1987.

4. Z. Liao, H.L. Wong, B. Yang and Y. Yuan, "A Transmitting Boundary for Transient
Wave Analysis", Scientia Sinica (Series A), Vol. 27, pp. 1063-1076, 1984.

5. G. Mur, "Absorbing Boundary Conditions for the Finite-Difference Approximation of
the Time-Domain Electromagnetic Field Equations”, IEEE Trans. Electromagn. Compat.,
Vol. 23, pp. 377-382, 1981.

6. D. Steich, "Local Outer Radiating Boundary Conditions for the Finite-Difference Time-
Domain Method Applied to Maxwell's Equations,” Ph.D. dissertation, The Pennsylvania
State University, May 1995.

7. G. Karypis and G. Kumar, “Parallel multilevel k-way partitioning scheme for irregular
graphs”, Technical Report TR 96-036, Department of Computer Science, U. of Minn.,
1996.

8. H. Simon, "Partitioning of Unstructured Problems for Parallel Processing”, Computing
Systems in Engineering, Vol. 2, No. 2/3, pp. 135-148, 1991.

19

Technicallnformation Departments Lawrence Livermore National Laboratory
University of California « Livermore, California 94551

