Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Effect of MnO on the microstructures, phase stability and mechanical properties of ceria-partially-stabilized zirconia (Ce-TZP) and Ce-TZP-Al sub 2 O sub 3 composites

Journal Article · · Journal of Materials Research; (USA)
; ; ;  [1]
  1. Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT (USA)
Effect of increasing amounts of MnO additions on the microstructures, phase stability and mechanical properties of ZrO{sub 2}-12 m% CeO{sub 2} and ZrO{sub 2}-12 m% CeO{sub 2}-10 w% Al{sub 2}O{sub 3} were studied. MnO suppressed grain growth in ZrO{sub 2}-12 m% CeO{sub 2}, while enhancing the mechanical properties significantly (strength=557 MPa, fracture toughness=9.3 MPa.(m){sup 1/2} at 0.2 w% MnO). The enhanced mechanical properties were achieved despite an increased stability of the tetragonal phase as evidenced by a lower burst transformation temperature (M{sub b}) and a reduced volume fraction of the monoclinic phase on the fracture surface. In ZrO{sub 2}-12 m% CeO{sub 2}-10 w% Al{sub 2}O{sub 3}, the addition of MnO suppressed the grain size of ZrO{sub 2}, while promoting grain growth and changing the morphology of Al{sub 2}O{sub 3}. More significantly, the stability of the tetragonal ZrO{sub 2} phase decreased (high M{sub b} temperature) with a concurrent increase in fracture toughness (13.2 MPa.(m){sup 1/2} at 2 w% MnO) and transformation plasticity (1.2% in four-point bending). The widths of the transformation zones observed adjacent to the fracture surfaces showed a consistent inverse relation to the transformation yield stress as would be expected from the mechanics of stress-induced phase transformation at crack tips. The improvements in mechanical properties obtained in the base Ce-TZP and the Ce-TZP-Al{sub 2}O{sub 3} composite ceramics with the addition of MnO are critically examined in the context of transformation toughening and other possible mechanisms.
DOE Contract Number:
FG02-87ER45312
OSTI ID:
6198013
Journal Information:
Journal of Materials Research; (USA), Journal Name: Journal of Materials Research; (USA) Vol. 5:9; ISSN JMREE; ISSN 0884-2914
Country of Publication:
United States
Language:
English