Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Model for deposition of bedded halite in a shallow shelf setting, San Andres Formation, Palo Duro Basin, Texas panhandle

Conference · · Geol. Soc. Am., Abstr. Programs; (United States)
OSTI ID:6196994

Existing depositional models for evaporites do not adequately describe facies relationships, halite fabrics, and trace element geochemistry of halite from the Permian San Andres Formation. Interbedding of anhydritic halite and mudstone with disrupted bedding records alternation between marine-dominated brine pool and subaerial environments. Chevron structures and hopper crystal cumulates in the halite indicate subaqueous deposition. Abundant anhydrite partings within halite, which thicken and become interbedded with marine shelf carbonates to the south, demonstrate the facies equivalence and physical connection of evaporite and marine environments. Maintenance of marine character in trace element profiles through halite sequences documents the episodic influx of marine water. Haloturbated structure in mudstone interbeds within the halite is produced by displacive growth of halite within mudstone and dissolution and collapse of this halite as ground-water chemistry fluctuates in response to conditions of alternating desiccation and wetting. Karst features cutting the halite also imply subaerial exposure. Mapping of the fine-scale sedimentary structures, geochemical signature, and insoluble component mineralogy of halite sequences indicates that the brine pool environment extended over areas in excess of 100 km/sup 2/. Sabkha, salina, playa, and deep water basin models of halite-precipitating environments do not satisfactorily describe the shallow marine shelf depositional environment of the San Andres halite.

Research Organization:
Univ. of Texas, Austin (USA)
OSTI ID:
6196994
Report Number(s):
CONF-8510489-
Journal Information:
Geol. Soc. Am., Abstr. Programs; (United States), Journal Name: Geol. Soc. Am., Abstr. Programs; (United States) Vol. 17; ISSN GAAPB
Country of Publication:
United States
Language:
English