skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Betaine synthesis and accumulation in barley during field water-stress

Journal Article · · Crop Sci.; (United States)

The timing and extent of betaine accumulation by mature leaves of barley (Hordeum vulgare L.) were followed in irrigated (I) and non-irrigated (N-I) plots under rain-shelters. In the N-I crop, leaf water potential (/sup psi/leaf) began to fall at the five-leaf stage, continued to drop steadily until maturity, and reached a minimum of about -35 bars. Betaine accumulation started in the N-I crop about a week after the decline in /sup psi/leaf began and continued until about 10 days post-anthesis. The maximum betaine concentration attained by N-I leaves (100 ..mu..mol/g dry wt) was three times that in I leaves. Betaine accumulation by upper leaves was due mainly to de novo synthesis in these leaves, because: (1) there was little /sup 14/C-import into upper leaves when (/sup 14/C)betaine was applied to lower leaves, and (2) attached upper leaves of N-I plants rapidly converted supplied (/sup 14/C)ethanolamine to (/sup 14/C)betaine during the peak period of betaine accumulation. Phosphatidylcholine (PC) behaved as an intermediate in the conversion of (/sup 14/C)ethanolamine to betaine. The estimated peak metabolic cost of betaine biosynthesis via PC by stressed leaves (about 2 mg hexose/g dry wt/day) approached the cost of protein turnover in the same leaves (3 to 5 mg hexose/g dry wt/day) as estimated from (/sup 3/H) lysine incorporation. In N-I plants, cessation of betaine synthesis preceded the onset of senescence by several days, indicating that continuous betaine production is not mandatory for leaf function at lowered /sup psi/leaf. These field results are consistent with an adaptive value for betaine accumulation in barley during prolonged water stress. A search for genetic variation in betaine-accumulating potential in barley is now warranted.

Research Organization:
Michigan State Univ., East Lansing
DOE Contract Number:
AC02-76ER01338
OSTI ID:
6173311
Journal Information:
Crop Sci.; (United States), Vol. 22:1
Country of Publication:
United States
Language:
English