skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radiotracer evidence implicating phosphoryl and phosphatidyl bases as intermediates in betaine synthesis by water-stressed barley leaves

Journal Article · · Plant Physiol.; (United States)
DOI:https://doi.org/10.1104/pp.68.4.814· OSTI ID:5763130

In pulse-chase experiments with barley wilted leaves, label from (/sup 14/C)-ethanolamine continued to accumulate in betaine as it was being lost from phosphatidylcholine. When (/sup 14/C)monomethylethanolamine was supplied to wilted leaves, phosphatidylcholine was initially more heavily labeled than betaine. These results are qualitatively consistent with a precursor-to-product relationship between phosphatidylcholine and betaine. The following experiments, in which tracer amounts of (/sup 14/C)ethanolamine or (/sup 14/C)formate were supplied to wilted barley leaves, implicated phosphoryl and phosphatidyl bases as intermediates in the methylation steps between ethanolamine and phosphatidylcholine. Label from both (/sup 14/C)ethanolamine and (/sup 14/C)formate entered phosphorylmonomethylethanolamine and phosphorylcholine very rapidly; these phosphoryl bases were the most heavily labeled products at 15 to 30 minutes after label addition and lost label rapidly as the fed /sup 14/C-labeled precursor was depleted. Phosphatidylmonomethylethanolamine and phosphatidylcholine were also significantly labeled from (/sup 14/C)ethanolamine and (/sup 14/)formate at early times; the corresponding free bases and nucleotide bases were not. Addition of a trapping pool of phosphorylcholine reduced (/sup 14/C)ethanolamine conversion to both phosphatidylcholine and betaine, and resulted in accumulation of labe in the trap. A computer model of the synthesis of betaine via phosphatidylcholine was developed from /sup 14/C kinetic data. The model indicates that about 20% of the total leaf phosphatidylcholine behaves as an intermediate in betaine biosynthesis and that a marked decrease (greater than or equal to2-fold) in the half-life of this metabolically active phosphatidylcholine fraction accompanies wilting.

Research Organization:
Michigan State Univ., East Lansing, MI (United States)
DOE Contract Number:
AC02-76ER01338
OSTI ID:
5763130
Journal Information:
Plant Physiol.; (United States), Vol. 68:4
Country of Publication:
United States
Language:
English