In-situ TEM observation of aluminum embrittlement by liquid gallium
Journal Article
·
· Scripta Materialia
- Washington State Univ., Pullman, WA (United States). Dept. of Mechanical and Materials Engineering
Liquid metal embrittlement (LME) occurs when some solids contact certain liquid metals. Normally ductile materials will exhibit brittle fracture behavior because of interactions between the solid metal and adsorbed liquid atoms. The fracture characteristics of different solid-liquid metal couples vary greatly. A requirement is that the liquid wets the surface of a solid. Ductile materials fail over a period of time, by slow and often discontinuous crack growth. For embrittlement to occur, the liquid metal atoms must be adsorbed at the crack tip. If the crack extends beyond the adsorbed atoms, it may become blunted and arrest. Thus the time necessary for failure depends on the transport of liquid metal atoms to the crack tip. The aluminum-gallium system exhibits this type of time-dependent failure. Liquid gallium penetrates the grain boundaries so that failure occurs primarily by intergranular fracture at applied stress levels as low as zero, although transgranular cleavage is sometimes observed for applied stress intensities of 4--5 MPa-m{sup 1/2}. This penetration proceeds much faster than can be accounted for by grain boundary diffusion, and occurs in the absence of any applied stress. The driving force is generally considered to be the reduction in interfacial energy which results when a high energy grain boundary is replaced with two lower energy aluminum-gallium interfaces. This study reports the results of grain boundary penetration observed in-situ in the TEM.
- Sponsoring Organization:
- USDOE, Washington, DC (United States)
- DOE Contract Number:
- FG06-87ER45287
- OSTI ID:
- 603894
- Journal Information:
- Scripta Materialia, Journal Name: Scripta Materialia Journal Issue: 3 Vol. 38; ISSN 1359-6462; ISSN SCMAF7
- Country of Publication:
- United States
- Language:
- English
Similar Records
Metal Induced Embrittlement and The Role of Defect Structures in Grain Boundaries on the Deformation and Fracture Behavior of Crystalline Solids (Grant DE-FG06-87ER45287 Summary Accomplishments)
Environmentally induced fracture of nickel alloys: a comparison of hydrogen and mercury embrittlement with respect to temperature
Dynamic fracture processes in hydrogen embrittled iron
Technical Report
·
Tue Jun 15 00:00:00 EDT 1999
·
OSTI ID:761733
Environmentally induced fracture of nickel alloys: a comparison of hydrogen and mercury embrittlement with respect to temperature
Thesis/Dissertation
·
Mon Dec 31 23:00:00 EST 1984
·
OSTI ID:5821568
Dynamic fracture processes in hydrogen embrittled iron
Journal Article
·
Sun Oct 01 00:00:00 EDT 2023
· Acta Materialia
·
OSTI ID:2007055