Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Peroxisomal and mitochondrial fatty acid oxidation in human hepatoma cells (HEP-G2)

Conference · · Fed. Proc., Fed. Am. Soc. Exp. Biol.; (United States)
OSTI ID:6028814
Hep-G2 cells oxidize (1-/sup 14/C)palmitic acid (C16) and (1-/sup 14/C) lignoceric acid (C24) via beta-oxidation to /sup 14/CO/sub 2/ and water-soluble (WS) products. After perchloric acid precipitation and chloroform-methanol extraction, the WS fraction contained labelled oxidation products as well as fatty acyl CoA's, thus, measurement of WS radioactivity is an overestimate of Hep-G2 beta-oxidation. Alkaline hydrolysis of fatty acyl CoA's prior to measurement of WS radioactivity permits more accurate assessment of beta-oxidation. Using this method, the optimal pH for oxidation of each fatty acid to WS products by Hep-G2 cells was 9.0, while /sup 14/CO/sub 2/ production was maximal at pH 7.0. To determine the subcellular location of beta-oxidation, mitochondria (M) were partially separated from peroxisomes (P) on linear Nycodenz gradients. In Hep-G2 cells, oxidation of both C16 and C24 was observed mainly in fractions enriched in succinate dehydrogenase, an M marker enzyme. In contrast, both P and M of rat liver oxidized these fatty acids. However, when Hep-G2 cells were fractionated on discontinuous sucrose gradients, C16 and C24 were oxidized by both P and M fractions. They conclude that beta-oxidation of both long (C16) and very long (C24) chain fatty acids occurs in P as well as in M of Hep-G2 cells, and the present method reflects a more accurate and sensitive measurement of oxidation rates.
Research Organization:
Johns Hopkins School of Medicine, Baltimore, MD
OSTI ID:
6028814
Report Number(s):
CONF-870644-
Conference Information:
Journal Name: Fed. Proc., Fed. Am. Soc. Exp. Biol.; (United States) Journal Volume: 46:6
Country of Publication:
United States
Language:
English