skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigations on the mechanism of oxygen-dependent plant processes: ethylene biosynthesis and cyanide-resistant respiration

Thesis/Dissertation ·
OSTI ID:6025936

Two oxygen-dependent plant processes were investigated. A cell-free preparation from pea (Pisum sativum L., cv. Alaska) was used to study ethylene biosynthesis from 1-aminocyclopropane-1-carboxylic acid. Mitochondrial cyanide-resistant respiration was investigated in studies with /sup 14/C-butyl gallate and other respiratory effectors. Ethylene biosynthesis was not due to a specific enzyme, or oxygen radicals. Rather, hydrogen peroxide, generated at low levels, coupled with endogenous manganese produced ethylene. /sup 14/C-butyl gallate bound specifically to mitochondria from cyanide-sensitive and -resistant higher plants and Neurospora crassa mitochondria. The amount of gallate bound was similar for all higher plant mitochondria. Rat liver mitochondria bound very little /sup 14/C-butyl gallate. Plant mitochondria in which cyanide-resistance was induced bound as much /sup 14/C-butyl gallate as before induction. However mitochondria from recently harvested white potato tubers did not bind the gallate. The observations suggest that an engaging factor couples with a gallate binding site in the mitochondrial membrane. With skunk cabbage spadix mitochondria the I/sub 5//sup 0/ for antimycin A inhibition of oxygen uptake was decreased by salicylhydroxamic acid pretreatment; this was also true for reverse order additions. No shift was observed with mung bean hypocotyl or Jerusalem artichoke tuber mitochondria.

Research Organization:
Duke Univ., Durham, NC (USA)
OSTI ID:
6025936
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English