Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1978-March 1979. [Ca/sulfides]

Technical Report ·
DOI:https://doi.org/10.2172/6024077· OSTI ID:6024077
This report covers the research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at subcontractors' laboratories on high-temperature batteries during the period October 1978 to March 1979. These batteries are being developed for electric-vehicle propulsion and for stationary energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing electrodes of lithium-aluminum alloy, and molten LiCl-KCl electrolyte. During this six-month period, cell and battery development work continued at ANL, Eagle-Picher Industries, Inc., Gould Inc., and the Energy Systems Group of Rockwell International. Fabrication of a 40-kWh battery by Eagle-Picher for testing in an electric van is nearing completion. Cost and design studies for a Mark II electric-vehicle battery, which will have somewhat higher performance and use potentially low-cost materials and fabrication methods, were conducted by all three subcontractors, and contracts are being negotiated for development of Mark II batteries. Conceptual design studies continued at Rockwell International on a 100 MWh stationary energy-storage module. The present plan is to construct a module based on these designs for testing at the BEST (Battery Energy Storage Test) Facility. Work was also in progress at the Carborundum Co., General Motors Research Laboratories, and various other organizations on developing materials and components for cells. 38 figures, 28 tables.
Research Organization:
Argonne National Lab., IL (USA)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-31109-ENG-38
OSTI ID:
6024077
Report Number(s):
ANL-79-39
Country of Publication:
United States
Language:
English