Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

A comparison of Weibull and. beta. sub Ic analyses of transition range data

Conference ·
OSTI ID:6002917
Specimen size effects on K{sub Jc} data scatter in the transition range of fracture toughness have been explained by external (weakest link) statistics. In this investigation, compact specimens of A 533 grade B steel were tested in sizes ranging from 1/2TC(T) to 4TC(T) with sufficient replication to obtain good three-parameter Weibull characterization of data distributions. The optimum fitting parameters for an assumed Weibull slope of 4 were calculated. External statistics analysis was applied to the 1/2TC(T) data to predict median K{sub Jc} values for 1TC(T), 2TC(T), and 4TC(T) specimens. The distributions from experimentally developed 1TC(T), 2TC(T), and 4TC(T) data tended to confirm the predictions. However, the extremal prediction model does not work well at lower-shelf toughness. At {minus}150{degree}C the extremal model predicts a specimen size effect where in reality there is no size effect.
Research Organization:
Oak Ridge National Lab., TN (United States)
Sponsoring Organization:
NRC; Nuclear Regulatory Commission, Washington, DC (United States)
DOE Contract Number:
AC05-84OR21400
OSTI ID:
6002917
Report Number(s):
CONF-910624-5; ON: DE92002802
Country of Publication:
United States
Language:
English