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ABSTRACT

Specimen size effects on K;, data scatter in the transition range of fracture toughness have
been explained by extremal (weakest link) statistics. In this investigation, compact specimens of
A 533 grade B steel were tested in sizes ranging from 12TC(T) to 4TC(T) with sufficient replication
to obtain good three-parameter Weibull characterization of data distributions. The optimum fitting
parameters for an assumed Weibull slope of 4 were calculated. Extremal statistics analysis was
applied to the 12TC(T) data to predict median K, values for 1TC(T), 2TC(T), and 4TC(T)
specimens. The distributions from experimentally developed 1TC(T), 2TC(T), and 4TC(T) data
tended to confirm the predictions. However, the extremal prediction model does not work well at
lower-shelf toughness. At -150°C the extremal model predicts a specimen size effect where in reality

there is no size effect.

Another model that has potential for dealing with data scatter effects in the transition range
is the Irwin B, - B, relationship. This model uses breakdown in constraint as the argument for
specimen size effects and suggests that data sets can be transposed from one size to another by

operating on each individual datum with the following equation:

ch = KJCUB]C lﬁc .
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Both models predict about the same distributions for specimens larger than 1TC(T) and only
the extremal statistical model can correctly predict the smaller specimen distribution. With the
B. - Bi. relationship, the limitation appears to be that 8, < xx must not be exceeded. Therefore, both
the statistical and ;. models have limitations for their use. This study explores these limitations and

makes specimen size requirement recommendations on K;_ data.
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INTRODUCTION

The fact that section size has an effect on the transition temperature of ferritic steels has
been known for several decades, but aside from empirical observations of constraint effects [1,2], no
rationale in the form of analytically based models had been forthcoming until recently. Early
application of statistical practices lacked a physical concept that could serve as the basis needed to
contribute to an improved understanding of what had already been known empirically. Recently,
Weibull fitting of data has been used to characterize data distributions and the principle of extremal
statistics (weakest link theory) has been shown to provide the needed size effect model. The accuracy
of determinations requires considerable replication of tests, however. In the current project, over 120
compact specimens of A 533B base metal in sizes ranging from 1/2TC(T) to 4TC(T) and A 533B weld
metal ranging from 1TC(T) to 8TC(T) have been tested in the transition range with sufficient
replication at some of the test temperatures for viable statistical analysis. Hence the new methods

that are used to predict trends in median toughness values due to specimen size can be effectively
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tested. The toughness parameter to be used herein is K;, which is defined as K at onset of cleavage
instability, and it is derived by conversion from J-integral at instability, J.. This paper will evaluate
Weibull fitting methods and extremal statistics that are used to predict specimen size effects. An
alternative predictive model, the 8, fracture toughness factor, that is derived from measured values

of K|, and that uses a constraint based argument, will also be reported.

Test Data

The test temperatures and numbers of specimens for the various specimen sizes of A 533B
steel are given in Table 1. All specimens were proportionally dimensioned compacts with relative
initial crack size, a/W, nominally at 0.5. Data scatter observed here is shown in Fig. 1. The
dependence of data scatter on specimen size is most evident at -75°C. Specimens of small thickness
tend to lose constraint earlier when entering the transition range because the volume of cross-slip
type of plastic deformation relative to the material thickness controls the transition toughness
development rate. Larger specimens require more ductility for proportional cross-slip, and essentially
similar data scatter characteristics are delayed to higher temperatures. It can be noted also that
specimen size effects do not exist on the lower shelf and tend to vanish again at high toughness levels
on the transition curve. To add evidence for the data scatter characteristics of large specimens at
high toughness, test data from the Fifth Irradiation Series at ORNL [3] were added herein. There
were two weld metals of identical chemistries except for copper content, Table 2. Extremal statistics

had been applied in that project because there was a need for making specimen size predictions.

Extremal Statistics

An application of extremal statistics to transition temperature behavior was developed in 1979

by Landes and Shaffer [4]. Using a two-parameter Weibull model, they demonstrated how data from
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1T compact specimens, 1TC(T), could be used to characterize the fracture toughness distribution of
larger 4T compact specimens, 4TC(T). The scatter in fracture toughness between replicate specimens
was proposed to be governed by occasional weak points or sources for brittle cleavage crack initiation
that are distributed randomly throughout the microstructure. Specimens with through-thickness
cracks have zones of concentrated stress at the crack tip, the volumes of which are proportional to
the specimen thickness. Therefore, the probability for imperfections of critical size to cause cleavage
fracture is relatable to specimen thickness. The mean fracture tcughness was projected to be lower
and the standard deviation smaller for larger specimens. The fracture toughness was expressed in
terms of J. and the distribution for the baseline data was fitted to the {ollowing two-parameter

Weibull model:

Py=1- exp[-(J]8,)’] ®

Where Py, is the probability that an arbitrarily chosen 1TC(T) specimen will have J, < J, 6, is a scale

parameter (J, = 6, when P = 0.632), and b is the Weibull slope.

The fitting constants determined from the data are 6, and b. In using this model, it is
assumed that the constraint is equal over all specimen sizes. Prior experience indicated that
constraint does not vary sufficiently in compact specimens when the remaining ligament length is
equal to or less than the specimen thickness [S]. Then if one were to test 4TC(T) specimens, the

probability for J_ instability prior to reaching the toughness level J, is given by:



P,=1- exp{~(J/8))"] @

Where 6, = 6,/(N)'®, and

N = (4/1)

The above two-parameter model had predicted mean J, for 4TC(T) specimens of ASTM
A 471 steel quite accurately at two of three test temperatures [4]. The Weibull slope (on J,) was
determined to be b = 5. Later experience suggests that they had an insufficient amount of data
replication to obtain accurate Weibull slopes. Also a weakness not recognized was that the
two-parameter extremal model will tend toward zero fracture toughness as the specimen size tends
to infinity. Therefore, in a later publication [6] the weakness was corrected by introducing a
three-parameter Weibull model. This has a lower-bound toughness value, J_;,, which defines a lower
limiting toughness for specimens of infinite thickness. The toughness parameter is expressed as
(. - J4,) and the denominator in Eq. (1) becomes (8, - J;,)- Figure 2 was used to illustrate the trial

and error procedure used to identify an optimum J;, value on 1/2TC(T) specimens of A 508 steel.

The general form is:

P

J-J_. )\ 3

1 oxp |- YT ®3)
©-J,.)

Seven examples of three-parameter determinations gave four apparently reasonable J;,

results for lower-bound toughness predictions. The three poor predictions were from data sets that

had only four to seven datum, and these were far too few to expect a good measure of the

nonlinearity of a data pooulation.
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In current publications, it is more common to see three-parameter Weibull fitting to K;,

data, where J_ is first calculated and then converted to K;, using:

K,-JTE )

Weibull Constant Fitting Methods

Wallin [7] has performed Weibull analyses, using K;. data on numerous similar material data
sets, large and small, and has concluded that toughness distributions generally show fixed Weibull
slope of 4 and that K ;, also tends to be constant at about 20 MPavm, independent of test
temperature. Implicit in this argument is that all J_ distributions should have a slope b = 2; noting
that K is proportional to the square root of J-integral. Brought into question is the initial finding of
Landes and Shaffer where slope, b, was 5 for their J_ data on A 471. The Wallin observation has
been generally supported by the work of others [8,9] who have shown that a slope of 4 has a basis
in micromechanics theory. The assertion that K, is constant is less secure from a fundamental
standpoint. Assuming K_;, has physical meaning as a lower-bound toughness, some have suggested
that lower bound K. or K;, values obtained from ASME Code regulations could be used [10]. On
the other hand, the best fits to the Weibull model are usually obtained with K, values considerably
lower than those indicated by the code curves. Figures 3 and 4 are representative of what results
from seeking the best K;, values using the base metal data from the test matrix of Table 1. There
are four specimen sizes and four test temperatures represented. The two fitting techniques used were
(1) adjusting all three Weibull constants to get an optimum linear fit to the data and (2) Weibull
slope set to 4 and then finding K ;, for optimum fit. Table 3 lists the fitting constants and correlation
coefficients of the two methods, and it appears that the fundamentally justified Weibull slope of 4
can provide a suitable representation of the distributions in most cases. One rule that was used,

however, is that K,;, was never allowed to be a negative value. Because of this, a few slopes were
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only near to 4. There were two cases where good linearity and a Weibull slope of 4 were not entirely
compatible, and these are shown in Figs. 5 and 6. Both cases had some data at relatively high
toughness conditions for the size of specimen used, and their Weibull plots suggest bilinearity with

an apparent break point at 125 MPavm for 1/2TC(T) and 192 MPavm for 1TC(T).

Prediction of Size Effects

The density function for the 1/2T compact specimens was used to predict median K;, values
for the Weibull fits to 1T, 2T, and 4T compact specimen data generated at the same test temperature
(-75°C). See Fig. 7 and Table 4. There are two sets of determinations in Table 4. In both cases a
fixed Weibull slope of 4 was used, with K_;, variable in one case and fixed at 20 MPavm in the other

case. The magnitude of median shift predicted for increased specimen size was reasonable in both

cases.

The same exercise applied to tests made at -150°C (Table 4) was not as satisfactory. A
specimen size effect was expected, but the distributions fitted to real data indicated no effect. The
scatter bands of data for all tests made on A 533B plate on all specimen sizes and for all test
temperatures was shown in Fig. 1. Note that at -150°C, the smallest specimens tested [12TC(T)]
had both the highest and lowest K, toughness values. Extremal statistics erroneously predicted a size
effect because of a breakdown in the weakest link model. This will happen when the size of the
imperfection needed to cause cleavage initiation becomes very small such that many cleavage sources
exist at all points along the crack tip. Hence there is a need to identify a lower toughness limit below

which extremal statistics will not apply. A suggested approach will be addressed in the discussion

section.



8

There can be some difficulty with the application of extremal statistics at the high toughness
end of the material transition curve. This was experienced in the Heavy-Section Steel Irradiation
Program in the Fifth Irradiation Series [3]. The objective of the experiment was to establish
lower-bound K, curves on two A 533B weld metals of different copper contents. Of special interest
was the shift and potential change in shape of the lower bound due to irradiation damage. Four 8T
compact specimens (two of each copper content) were to be tested at the highest possible toughness
level that would be consistent with the ASTM validity requirements on K. It was determined that
the maximum K;, would be a valid K;, at 150 MPavm, and a temperature where this was likely to
happen was chosen using smaller specimens. The sequence used was to first test four 2TC(T)
specimens at the selected temperature to provide a baseline Weibull distribution for predicting the
8TC(T) distribution. One of the two plots made is shown in Fig. 8. Because median K, was
predicted to be 150 MPavm, it was presumed that the chance of obtaining valid K;, should be 1 in
2 for each large specimen tested. Nevertheless, none of the four large specimens gave valid K;.. The
trend indicated with 4TC(T) and 6TC(T) specimens gave no evidence that there might have been a
breakdown in the extremal assumption, but the high toughness position on the transition curve
evidently had broadened the scatter band width for large specimens enough to make it difficult to
assure an aim value. Hence, the utility of these predictions of size effects may be limited to a

transition temperature window in the lower transition range.

B. - B, Fracture Toughness Correlation

Another perspective on the K, data scatter phenomenon is to consider that the early (lower
temperature) increase in K, data scatter of small specimens is due to the lower constraint. Smaller
specimens tend to respond nonlinearly with less crack tip plastic deformation, readily losing constraint

in the crack tip region. Larger specimens require proportionately more cross slip, and similar data
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scatter is delayed to higher temperatures. To relate high and low constraint toughness, Irwin [11] had
developed a semiempirical relationship based on the behavior of high strength metallic materials.
Merkle has investigated the potential of this relationship for use with the structural steels that are

used in pressure vessels. It is as follows:

B.= B+ 14B3 ©)

Where 8, = (1/B)(KJc/ays)2, and

Bi = (1/B)(Kido,,)®

The B, value determined for each individual datum is picked out of a family of replicate tests.
An estimate of K  is made on each one, thereby establishing a family of K, distributions. The
procedure is to use . in Eq. (5) and determine the corresponding B, either by iteration or by using

a preformulated solution of the cubic equation. Then K,_ is determined using:

K= K, -%’i 6

<

Three-parameter Weibull can then be fitted to the K, distribution or to interpolated values
for intermediate specimen sizes. Equation (5) is used to interpolate in all cases. Figure 9 shows K,
data selected at three toughness levels from within the actual data sets for 1TC(T), 2TC(T), and
4TC(T) specimens (A 533 grade B base metal tested at -75°C). These are the solid data points in
Fig. 9. The interpolation and extrapolation by Eq. (5) of the three specificaily selected toughness
levels are shown as open data points. The solid line represents the toughness trend over varied
thickness that is implied by Eq. (5). Irwin had cautioned that the semiempirical relationship should

not be used when B_ is greater than & and this limit is denoted in Fig. 9 as a dashed line. This
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limitation required that for the toughness of A 533B at -75°C, data from 1T or larger compact
specimens must be used to develop the baseline Weibull plot. Figure 10 shows predictions of density
functions from use of the 1TC(T) baseline data. Table 5 compares the predicted size effect on
median K;_ obtained from the density functions to those from the extremal statistical model. Again,
this is using the 1TC(T) specimen data as baseline. Note that the beta method projects essentially

the same result except for 1/2TC(T) where most of the projected values have 8, much greater than

.

DISCUSSION

The practical application for this work is to learn how data taken from small fracture
mechanics type specimens can be used to infer the fracture toughness performance in full-scale
structures. The general format of data development limitations is illustrated schematically in Fig. 11.
This is for 1/2T compacts made of A 533B. From evidence in Figs. 5 and 6, it appears that constraint
is controlled sufficiently for Weibull fitting and extremal statistics predictions for 8, up to Zr. The
low toughness limitation for extremal statistics has not been determined, but a practical lower limit
might be where B, = 0.4. These limits would apply to distributions where a high percentage of the
K, values within the baseline distribution would satisfy the suggested criteria. Figure 11 indicates
that the semiempirical g, - B, relationship might be suitable for toughness where 8, is equal to x or
less. This model tends to plateau along with test data at the lower plateau of transition toughness,

and median K, can be more reasonably determined with this model.

If it can be established with reasonable confidence that Weibull slope is almost always 4 for

most structural steels, and that K;, = 20 MPavm is a reasonable compromise value, then the number
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of small specimens needed to establish a reasonable baseline Weibull distribution is highly reduced
because only the scale parameter need be determined. Perhaps only a half-dozen specimens would
suffice. Such a practice would only be suitable for establishing trends in mean toughness, however,
because the tails of the fitted distribution curves would be quite unreliable and not usable to estimate

lower-bound values. The utility would be for the determination of median transition curve shift due

to irradiation damage effects.

CONCLUSION

This paper has used selected data from two projects that were designed to study the fracture
mechanics aspects of transition temperature behavior of structural steels. It is concluded that
statistical methods and a constraint based model can be incorporated into an overall plan to deal with
size effects. Transition temperature shifts can be predicted for materials that are used in large
structures using small surveillance size specimens. The establishment of lower-bound K, curves by

testing just a few small specimens is not suggested at the present time.
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Fig. 1. Data scatter of K;_ values of A 533B class 1 steel.
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Fig. 5. Bilinear Weibull slope development for 1/2TC(T) specimens tested at -75°C.
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Fig. 7. Density functions predicted from 1/2TC(T) specimens tested at -75°C.

Fig. 8. Example of extremal statistics used on 2TC(T) K, data to predict median toughness

for 8TC(T) specimens tested at the same temperature.

Fig. 9. Fracture toughness trends for selected positions in K, data scatter bands. Trend lines

are from the Irwin B, - B, relationship.
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Fig. 10. Distribution functions for 1/2TC(T), 2TC(T), and 4TC(T) specimens predicted from

1TC(T) K,, data and size effect prediction by constraint effects assumption.

Fig. 11. Zone of application for models that predict size effects in the lower transition range

of fracture toughness.
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Table. 1. Test conditions and number of replicate

specimens used in statistical analysis

Test Number of specimens
Material temperature
(°C) 12TC(T) 1TC(T) =21 ) 4TC(T) 6TC(T) 8TC(T)
A 533 grade B -150 18 17 12
Plate 13A
-75 20 26 12 6
-18 6 2
24
A 533 grade B
welds
W 10 2 2 2
73W -5 2 2




Table 2. Materials

Yield and tensile strengths
of test materials

Strength,
Material MPa (ksi)
Yield Ultimate
A 533 grade B 444 (64.4) 600 (87.0)
A 533 grade B SA weld 2W 499 (72.4) 608 (88.2)
73W 490 (71.1) 600 (87.0)
Nominal chemical compositions
Composition
Material® (wt %)
C Mn P S Si Cr Ni Mo Cu v
A 533 025 134 035> 0.040° 0.29 0.55 0.52
grade B
Plate 13A
A 533
grade B
welds:
72W 0.093 166 0006 0006 0.044 0.27 0.60 0.58 0.23 0.003
3W 0098 156 0005 0.005 0.045 0.25 0.60 0.58 0.31 0.003

*ASTM specifications for A 533 class 1.

"Maximum.



Table 3. Comparison of Weibull fitting parameters
for best correlation coefficient

Three fitting parameters Fixed slope
Test Size Two fitting parameters
teml()fé;mre [C(D]  siope K,,* Correlation Slope K, Correlation
coefficient coeflicient
-150 12T 1.7 25 0.991 4 10.5 0.975
-150 1T 1.6 34 0.993 4 245 0.961
-150 2T 3.0 24 0.990 4 19.0 0.998
-75 12T 1.1 89 0.991 4 425 0.933
-75 1T 3.3 0.993 4 0 0.993
-75 2T 4.7 0 0.983 4 13.5 0.983
-75 4T 1.8 44 0.986 4 6.0 0.982
-18 1T 0.9 109 0.988 4 0 0.914
24 1T 3.2 0 0.913 4 0 0.913

*Kai, for best fit with b, K, and K;, variable.
*Kaia for best fit with K, and K, variable.



Table 4. Size effect predictions using extremal statistics
(Weibull slope of 4, comparing best K_;, vs fixed K_;,)

Mf;i}i)ax\)/ K,
avm
temg:::ture Size : )Extremal predictions from
C) [C(TD)] Fit actual data 12TC(T)
Best Ky, Kain = 20 Best K, Kain = 20
-75 12T 122.4 124.8
-75 1T 102.4 98.6 109.9 108.2
-75 2T 102.6 102.1 9.3 94.1
-75 4T 86.4 85.3 90.4 823
-150 12T 40.6 39.8
-150 1T 43.4 43.7 33.9 36.7
-150 2T 44.8 44.8 319 34.0

-150 4T 28.5 318

A



Table 5. Predicted specimen size effect, comparing
extremal statistics and beta methods

Median K,
Test ) (MPavm)
temperature  Size
(°C) [C(T)] Fit Predictions from 1TC(T)
actual
-75 1/2T 1224 1213 159.8
-75 1T 102.4
-75 2T 102.6 85.8 81.1
-75 4T 86.4 72.1 74.2
-150 12T 40.6 482 47.2
-150 1T 43.7
-150 2T 44.8 39.9 42.6

-150 4T 36.8 42.4
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