Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Effect of cold work on tensile behavior of irradiated type 316 stainless steel

Conference ·
OSTI ID:5908407

Tensile specimens were irradiated in ORR at 250, 290, 450, and 500/sup 0/C to produce a displacement damage of approx.5 dpa and 40 at. ppM He. Irradiation at 250 and 290/sup 0/C caused an increase in yield stress and ultimate tensile strength and a decrease in ductility relative to unaged and thermally aged controls. The changes were greatest for the 20%-cold-worked steel and lowest for the 50%-cold-worked steel. Irradiation at 450/sup 0/C caused a slight relative decrease in strength for all cold-worked conditions. A large decrease was observed at 500/sup 0/C, with the largest decrease occurring for the 50%-cold-worked specimen. No bubble, void, or precipitate formation was observed for specimens examined by transmission electron microscopy (TEM). The irradiation hardening was correlated with Frank-loop and ''black-dot'' loop damage. A strength decrease at 500/sup 0/C was correlated with dislocation network recovery. Comparison of tensile and TEM results from ORR-irradiated steel with those from steels irradiated in the High Flux Isotope Reactor and the Experimental Breeder Reactor indicated consistent strength and microstructure changes.

Research Organization:
Oak Ridge National Lab., TN (USA)
DOE Contract Number:
AC05-84OR21400
OSTI ID:
5908407
Report Number(s):
CONF-860605-10; ON: DE86008491
Country of Publication:
United States
Language:
English