Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Studies on the effects of lead toxicity on glutathione metabolism in the chick

Thesis/Dissertation ·
OSTI ID:5884391

Studies were performed to investigate certain aspects of lead toxicity in the chick. In the first study, the mechanism of the Pb-induced changes in glutathione (GSH) metabolism was examined by comparing changes in organ non-protein thiol concentrations during the administration of Pb by intraperitoneal injection (acute) or in the diet (chronic). The synthesis of GSH in the liver was increased by both acute and chronic Pb administration when evaluated in terms of the rate of incorporation of (I/sup 14/C)-glycine into hepatic GSH. Total nonprotein sulfhydryl (NPSH) concentrations were also increased by both acute and chronic Pb. However, that portion of NPSH which is GSH was increased only by prolonged (chronic) exposure to Pb. The administration of buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, decreased hepatic HPDH and GSH concentrations both in the presence and absence of injected Pb and inhibited the effects of dietary Pb on hepatic NPSH and GSH concentrations. The data suggested an immediate release of NPSH compounds into blood plasma following acute PB injection. Thus, the interorgan translocation system for GSH may be important in acute Pb intoxication in that it facilitates an immediate response to maintain cellular GSH levels being depleted by detoxification reactions by increasing the rate of GSH turnover. The antagonistic relationship between Pb and Se was investigated in terms of chick body weight gain and changes in organ non-protein thiol concentrated when administered with diets containing deficient adequate, and excess amounts of Se. Growth depression by 2000 ppm dietary Pb was observed with diets that were either deficient or adequate in dietary Se.

Research Organization:
North Carolina State Univ., Raleigh (USA)
OSTI ID:
5884391
Country of Publication:
United States
Language:
English