skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tumor promoting phorbol diesters: substrates for diacylglycerol lipase

Abstract

Enzyme activity in rat serum was examined utilizing the potent tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and various glycerolipids as substrates. The serum activity was specific for hydrolysis of the long chain tetradecanoate moiety of TPA, hydrolyzed mono- and diacylglycerols, but was not effective against triacylglycerols, cholesterylesters, or phospholipids. Heating the enzyme preparation at 56/sup 0/C for 1 min was dually effective in reducing the hydrolysis of both TPA and dioleoylglycerol by 83-86% of control levels. The potent diacylglycerol lipase inhibitor, RHC 80267, inhibited the hydrolysis of TPA in the 0.2-1.0 ..mu..M range and was also a potent blocker of monoacyl- and diacylglycerol hydrolysis. In substrate competition studies, exogenous unlabeled TPA was added to the (/sup 14/C)dioleoylglycerol-containing reaction mixture, however, this produced an approximate 3-fold stimulation of (/sup 14/)dioleoylglycerol hydrolysis. Although we have not established whether the hydrolysis of TPA and diacylglycerol is the work of one enzyme, the effectiveness of the specific lipase inhibitor, RHC 80267, demonstrates that diacylglycerol lipase can utilize TPA as substrate, a finding never before documented. This point is of interest in light of the theory that phorbol esters act by mimicry of the natural lipid mediator, diacylglycerols. 44 references, 3 figures, 1 table.

Authors:
Publication Date:
Research Org.:
Oak Ridge Associated Universities, TN
OSTI Identifier:
5871776
Resource Type:
Journal Article
Resource Relation:
Journal Name: Biochem. Biophys. Res. Commun.; (United States); Journal Volume: 123:1
Country of Publication:
United States
Language:
English
Subject:
63 RADIATION, THERMAL, AND OTHER ENVIRON. POLLUTANT EFFECTS ON LIVING ORGS. AND BIOL. MAT.; LIPASE; ENZYME ACTIVITY; PHORBOL ESTERS; METABOLISM; BIOCHEMISTRY; CARBON 14 COMPOUNDS; ENZYME INHIBITORS; GLYCEROL; HYDROLYSIS; LIPIDS; RATS; SUBSTRATES; TEMPERATURE EFFECTS; TRACER TECHNIQUES; TUMOR PROMOTERS; ALCOHOLS; ANIMALS; CARBOXYLESTERASES; CARCINOGENS; CHEMICAL REACTIONS; CHEMISTRY; DECOMPOSITION; ENZYMES; ESTERASES; ESTERS; HYDROLASES; HYDROXY COMPOUNDS; ISOTOPE APPLICATIONS; LABELLED COMPOUNDS; LYSIS; MAMMALS; ORGANIC COMPOUNDS; PROMOTERS; RODENTS; SOLVOLYSIS; VERTEBRATES; 560301* - Chemicals Metabolism & Toxicology- Cells- (-1987)

Citation Formats

Cabot, M.C. Tumor promoting phorbol diesters: substrates for diacylglycerol lipase. United States: N. p., 1984. Web. doi:10.1016/0006-291X(84)90395-4.
Cabot, M.C. Tumor promoting phorbol diesters: substrates for diacylglycerol lipase. United States. doi:10.1016/0006-291X(84)90395-4.
Cabot, M.C. 1984. "Tumor promoting phorbol diesters: substrates for diacylglycerol lipase". United States. doi:10.1016/0006-291X(84)90395-4.
@article{osti_5871776,
title = {Tumor promoting phorbol diesters: substrates for diacylglycerol lipase},
author = {Cabot, M.C.},
abstractNote = {Enzyme activity in rat serum was examined utilizing the potent tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and various glycerolipids as substrates. The serum activity was specific for hydrolysis of the long chain tetradecanoate moiety of TPA, hydrolyzed mono- and diacylglycerols, but was not effective against triacylglycerols, cholesterylesters, or phospholipids. Heating the enzyme preparation at 56/sup 0/C for 1 min was dually effective in reducing the hydrolysis of both TPA and dioleoylglycerol by 83-86% of control levels. The potent diacylglycerol lipase inhibitor, RHC 80267, inhibited the hydrolysis of TPA in the 0.2-1.0 ..mu..M range and was also a potent blocker of monoacyl- and diacylglycerol hydrolysis. In substrate competition studies, exogenous unlabeled TPA was added to the (/sup 14/C)dioleoylglycerol-containing reaction mixture, however, this produced an approximate 3-fold stimulation of (/sup 14/)dioleoylglycerol hydrolysis. Although we have not established whether the hydrolysis of TPA and diacylglycerol is the work of one enzyme, the effectiveness of the specific lipase inhibitor, RHC 80267, demonstrates that diacylglycerol lipase can utilize TPA as substrate, a finding never before documented. This point is of interest in light of the theory that phorbol esters act by mimicry of the natural lipid mediator, diacylglycerols. 44 references, 3 figures, 1 table.},
doi = {10.1016/0006-291X(84)90395-4},
journal = {Biochem. Biophys. Res. Commun.; (United States)},
number = ,
volume = 123:1,
place = {United States},
year = 1984,
month = 8
}
  • Involvement of gap-junctional intercellular communication in the stimulation of growth was investigated in quiescent 3T3-L1 cells. When the cells in monolayer were growth-arrested by culture in a low concentration of calf serum, addition of dibutyryl cyclic AMP enhanced dye-coupling and suppressed the enhancement of DNA synthesis, induced by calf serum, in quiescent cells. 12-O-Tetradecanoylphorbol-13-acetate (TPA) suppressed dye-coupling in quiescent cells and enhanced DNA synthesis in both quiescent and serum-treated cells. When about 5000 cells were cultured in contact to form a colony, growth arrest of the cells was observed in the central region of such colonies rather than in themore » peripheral region, but addition of calf serum induced DNA synthesis in the cells in both the peripheral and central regions of the colonies. Addition of TPA enhanced serum-induced DNA synthesis in the cells in the central region of colonies rather than in the peripheral region. These results suggest that the ability of quiescent cells to escape from growth arrest is inversely correlated to the extent of gap-junctional intercellular communication.« less
  • In adrenalectomized rats, the tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) markedly enhanced the inductions of tyrosine aminotransferase (TAT) and ornithine decarboxylase by glucocorticoids, even with sufficient concentration of glucocorticoids to have a maximal effect, whereas it had no effect on TAT activity and increased ornithine decarboxylase activity only slightly in the absence of glucocorticoids. Phorbol derivatives and components of TPA such as 4..beta..-phorbol, phorbol 12-tetradecanoate, phorbol 13-acetate, and 4-O-methylphorbol 12-tetradecanoate 13-acetate, which have no tumor-promoting activity or ability to activate protein kinase C, did not have any effect on TAT induction by glucocorticoid. TPA enhanced the induction of TAT bymore » various glucocorticoids but had no effect on induction of TAT by glucagon or insulin and did not enhance the induction of glucose-6-phosphate dehydrogenase by 17..beta..-estradiol. These results suggest that TPA specifically enhances the induction of TAT and ornithine decarboxylase by glucocorticoids. Similar effects of TPA on TAT induction by glucocorticoid were observed in primary cultures of adult rat hepatocytes. Another activator of protein kinase C, rac-1,2-dioctanoylglycerol, was also found to have similar effects on the cells.« less
  • Human promyeloytic leukemia cells (HL-60) were induced to differentiation into mature cells by the tumor-promoting agent phorbol-12-myristate-13-acetate and other related phorbol diesters. Differentiation was determined by an increase in the percent of myelocytes, metamyelocytes, and other mature myeloid cells as well as by an increase in the percent of phagocytizing cells. Induction of differentiation could be determined after 2 days of treatment with phorbol-12-myristate-13-acetate at a dose as low as 6x10/sup -11/ M. A correlation was found between reported tumor-promoting activity of a series of phorbol esters and their ability to induce myeloid differentiation and to inhibit cell growth. Itmore » is suggested that tumor-promoting agents like chemicals that induce terminal differentiation in these cells, at extremely low concentrations, may be used as a tool in the study of the control of cell growth, cell differentiation, and malignancy in human leukemic cells.« less
  • Rat liver homogenate or cell fractions deacylate 12-O-tetradecanoyl phorbol 13-acetate (TPA) in vitro mainly by conversion to phorbol 13-acetate. The highest specific activity is located in the microsomal fraction. The deacylation is inhibited by bis-(4-nitrophenyl) phosphate, a selective inhibitor of nonspecific carboxylesterases. Only two of five purified esterases from rat liver endoplasmic reticulum deacylate TPA. These two esterases have formerly been characterized as acylcarnitine hydrolases and the more active one is also a potent diacylglycerol lipase. Its TPA-hydrolyzing activity is inhibited by other substrates like 1-naphthylacetate, lauroylcarnitine, or dioleoyl glycerol. The results support the view that phorbol esters act likemore » structural analogs of diacylglycerols, not only with respect to their activating effect on protein kinase C, but also as substrates for the same lipases.« less
  • Expression of transferrin receptors (TfR) by activated lymphocytes is necessary for lymphocyte DNA synthesis and proliferation. Regulation of TfR expression, therefore, is a mechanism by which the lymphocyte's proliferative potential may be directed and controlled. The authors studied mechanisms by which lymphoblastoid cells modulate TfR expression during treatment with phorbol diesters or iron transferrin (FeTf), agents which cause downregulation of cell surface TfR. Phorbol diester-induced TfR downregulation occurred rapidly, being detectable at 2 min and reaching maximal decreases of 50% by 15 min. It was inhibited by cold but not by agents that destabilize cytoskeletal elements. Furthermore, this downregulation wasmore » reversed rapidly by washing or by treatment with the membrane interactive agent, chlorpromazine. In contrast, FeTf-induced TfR downregulation occurred slowly. Decreased expression of TfR was detectable only after 15 min and maximal downregulation was achieved after 60 min. Although FeTf-induced downregulation also was inhibited by cold, it was inhibited in addition by a group of microtubule destabilizing agents (colchicine, vinblastine, podophyllotoxin) or cytochalasin B, a microfilament inhibitor. Furthermore, FeTf-induced downregulation was not reversed readily by washing or by treatment with chlorpromazine. Phorbol diesters cause TfR downregulation by a cytoskeleton-independent mechanism. These data indicate that TfR expression is regulated by two independent mechanisms in lymphoblastoid cells, and they provide the possibility that downregulation of TfR by different mechanisms may result in different effects in these cells.« less