Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Tritium pumping based on asymmetric permeation

Conference · · Fusion Technol.; (United States)
OSTI ID:5869042

The variation in the steady state hydrogen permeation flux magnitude through composite metals under both molecular and atomic hydrogen upstream driving conditions is discussed. With molecular hydrogen upstream, the permeant flux magnitude does not depend on the permeant direction through the composite. Under atomic hydrogen bombardment conditions on the upstream side, however, this magnitude does depend on the permeant direction. In a two layer system, the permeant flux magnitude is enhanced by orienting the composite metal such that the layer with the higher product of solubility (S) with surface recombination rate constant (k /sub r/ ) faces downstream. Furthermore, the degree of asymmetry in the hydrogen flow (forward permeation/reverse permeation) increases with decreasing upstream pressure. First measurements on a copper-clad mild steel membrane are presented and confirm the expected permeation performance.

Research Organization:
Ontario Hydro Research Division, Toronto, Ontario
OSTI ID:
5869042
Report Number(s):
CONF-850405-
Journal Information:
Fusion Technol.; (United States), Journal Name: Fusion Technol.; (United States) Vol. 8:2; ISSN FUSTE
Country of Publication:
United States
Language:
English