Hydro turbine rehab benefits from modeling
- Black and Veatch (US)
The turbine aging process, while seemingly imperceptible, inevitably results in reduced turbine efficiency and capacity. The primary causes of these reductions are runner hydraulic profile changes during weld repairs, surface finish deterioration from cavitation, and runner seal clearance increases due to wear. Many aging turbines require more frequent repairs due to runner cavitation, and wicket gate mechanism, shaft seal, and guide bearing wear. In many instances turbine component repair can be performed in-place. On older units, runner seals, wicket gate bearings, and wicket gate end seals can be repaired only when the turbine is disassembled. Since the significant cost to disassemble and overhaul units must be offset by future maintenance savings and generation increases, turbine rehabilitation is often postponed as owners consider other alternatives. Rehabilitation is a general term used to describe a wide range of turbine reconditioning and design alternatives. Turbine rehabilitation can include a major overhaul of components, runner replacement, and component modifications. Deteriorated runners can be replaced with either a new identical runner or a new modern design having increased efficiency and capacity. The comparative turbine performance of an original, existing, and a modern runner design are shown in this paper. Component overhauls can extend turbine life and restore original efficiency and capacity to existing units. However, the overhaul of existing components cannot increase plant capacity and generation above the as-new values. As a result, owners of aging plants are considering the benefits of replacing existing turbines with modern, more efficient, higher capacity turbines, or expanding the sites. Where expansion is not feasible, hydroelectric power plant owners are finding that turbine rehabilitation is the most cost-effective method to increase plant value and life.
- OSTI ID:
- 5863091
- Journal Information:
- Power Engineering; (United States), Journal Name: Power Engineering; (United States) Vol. 95:1; ISSN POENA; ISSN 0032-5961
- Country of Publication:
- United States
- Language:
- English
Similar Records
Recent advances in upgrading large pumps
Potential flow turbine and it`s application