Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Structure of the threonine-rich extensin from Zea mays

Journal Article · · Plant Physiology; (USA)
DOI:https://doi.org/10.1104/pp.92.2.316· OSTI ID:5859329
Chymotryptic digestion of a threonine-rich hydroxyproline-rich glycoprotein (THRGP) purified from the cell surface of a Zea mays cell suspension culture gave a peptide map dominated by the hexadecapeptide TC5: Thr-Hyp-Ser-Hyp-Lys-Pro-Hyp-Thr-Pro-Lys-Pro-Thr-Hyp-Thr-Thr, in which the repetitive motif Ser-Hyp-Lys-Pro-Hyp-Thr-Pro-Lys is homologous with the dominant decamer of P1-type dicot extensins: Ser-Hyp-Hyp-Hyp-Hyp-Thr-Hyp-Val-Tyr-Lys, modified by a Lys for Hyp substitution at residue 3, a Val-Tyr deletion at residues 8 and 9, and incomplete posttranslational modification of proline residues. One of the minor peptides (TC1) contained the 8-residue sequence: Thr-Hyp-Ser-Hyp-Hyp-Hyp-Hyp-Tyr corresponding to the C-terminal tail (judging from the recently isolated maize cDNA clone MC56) which is homologous with the major repetitive motif of the P3 class of dicot extensins. Direct peptide sequencing defined potential glycosylated regions on the THRGP corresponding to clone MC56 and showing that glycosylated and nonglycosylated domains alternate with high regularity. In a quantitative enzyme-linked immunosorbent assay, these antibodies cross-reacted 20% with tomato P1 extensin, and 18% with anhydrous hydrogen fluoride-deglycosylated P1. These results, together with other previously published data, show that maize THRGP is homologous with the dicot P1 extensins and, as such, is the first extensin isolated from a graminaceous monocot.
OSTI ID:
5859329
Journal Information:
Plant Physiology; (USA), Journal Name: Plant Physiology; (USA) Vol. 92:2; ISSN PLPHA; ISSN 0032-0889
Country of Publication:
United States
Language:
English