skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Kinetic undercooling in solidification of a hypereutectic Al-Si alloy; effect of solidifying within a ceramic preform composite

Journal Article · · Acta Materialia
OSTI ID:585927
; ;  [1];  [2]
  1. Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Materials Science and Engineering
  2. Univ. of Connecticut, Storrs, CT (United States). Dept. of Metallurgy

Dendrite tip temperature measurements are reported for the hypereutectic alloy Al-30% Si, directionally solidified as a bulk (non-composite) alloy, and also as the matrix of a fibrous metal matrix composite. Over the range of top velocities studied (10--1,000 {micro}m s) the primary Si tip undercooling in the directionally solidified bulk alloy increases slightly with increasing tip velocity, and indicates, by its large value, the presence of significant kinetic undercooling. This is in contrast with solidification of the composite, in which the primary Si tip undercooling decreases markedly with increasing tip velocity and is in quantitative agreement with theory for cellular solidification with no kinetic undercooling. These results, supported by metallographic observations, indicate that ``wetting`` of the alumina fibers by the growing silicon phase in the composite essentially eliminates the kinetic barrier to growth of primary Si crystals. The underlying mechanism is rationalized on the basis of macroscopic capillaric analysis at the solid/fiber/liquid juncture. This juncture is shown to be significantly more efficient in nucleating new facet planes than is a re-entrant twin plane corner.

OSTI ID:
585927
Journal Information:
Acta Materialia, Vol. 46, Issue 1; Other Information: PBD: 19 Dec 1997
Country of Publication:
United States
Language:
English

Similar Records

Steady-state cellular solidification of Al-Cu reinforced with alumina fibers
Journal Article · Tue Aug 01 00:00:00 EDT 1995 · Metallurgical Transactions, A · OSTI ID:585927

Solidification of undercooled Fe-Cr-Ni alloys. Part 2: Microstructural evolution
Journal Article · Tue Oct 01 00:00:00 EDT 1996 · Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science · OSTI ID:585927

Solidification of undercooled Fe-Cr-Ni alloys. Part 3: Phase selection in chill casting
Journal Article · Sat Nov 01 00:00:00 EST 1997 · Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science · OSTI ID:585927