# Finite field equation of Yang--Mills theory

## Abstract

We consider the finite local field equation -)(1+1/..cap alpha.. (1+f/sub 4/))g/sup munu/D'Alembertian-partial/sup ..mu../partial/sup ..nu../)A/sup nua/ =-(1+f/sub 3/) g/sup 2/N(A/sup c/..nu..A/sup a/..mu..A/sub ..nu..//sup c/) +xxx+(1-s)/sup 2/M/sup 2/A/sup a/..mu.., introduced by Lowenstein to rigorously describe SU(2) Yang--Mills theory, which is written in terms of normal products. We also consider the operator product expansion A/sup c/..nu..(x+xi) A/sup a/..mu..(x) A/sup b/lambda(x-xi) approx...sigma..M/sup c/ab..nu mu..lambda/sub c/'a'b'..nu..'..mu..'lambda' (xi) N(A/sup nuprimec/'A/sup muprimea/'A/sup lambdaprimeb/')(x), and using asymptotic freedom, we compute the leading behavior of the Wilson coefficients M/sup ...//sub .../(xi) with the help of a computer, and express the normal products in the field equation in terms of products of the c-number Wilson coefficients and of operator products like A/sup c/..nu..(x+xi) A/sup a/..mu..(x) A/sup b/lambda(x-xi) at separated points. Our result is -)(1+(1/..cap alpha..)(1+f/sub 4/))g/sup munu/D'Alembertian-partial/sup ..mu../partial/sup ..nu../)A/sup nua/ =-(1+f/sub 3/) g/sup 2/lim/sub xiarrow-right0/) (lnxi)/sup -0.28/2b/(A/sup c/..nu.. (x+xi) A/sup a/..mu..(x) A/sub ..nu..//sup c/(x-xi) +epsilon/sup a/bcA/sup muc/(x+xi) partial/sup ..nu../A/sup b//sub ..nu../(x)+xxx) +xxx)+(1-s)/sup 2/M/sup 2/A/sup a/..mu.., where ..beta.. (g) =-bg/sup 3/, and so (lnxi)/sup -0.28/2b/ is the leading behavior of the c-number coefficient multiplying the operator products in the field equation.

- Authors:

- Publication Date:

- Research Org.:
- Department of Physics, New York University, 4 Washington Place, New York, New York, 10003 USA

- OSTI Identifier:
- 5728641

- Resource Type:
- Journal Article

- Journal Name:
- J. Math. Phys. (N.Y.); (United States)

- Additional Journal Information:
- Journal Volume: 21:3

- Country of Publication:
- United States

- Language:
- English

- Subject:
- 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; YANG-MILLS THEORY; FIELD EQUATIONS; GAUGE INVARIANCE; MATHEMATICAL OPERATORS; QUANTUM FIELD THEORY; RENORMALIZATION; EQUATIONS; FIELD THEORIES; INVARIANCE PRINCIPLES; 645400* - High Energy Physics- Field Theory

### Citation Formats

```
Brandt, R A, Wing-Chiu, N, and Yeung, W.
```*Finite field equation of Yang--Mills theory*. United States: N. p., 1980.
Web. doi:10.1063/1.524453.

```
Brandt, R A, Wing-Chiu, N, & Yeung, W.
```*Finite field equation of Yang--Mills theory*. United States. doi:10.1063/1.524453.

```
Brandt, R A, Wing-Chiu, N, and Yeung, W. Sat .
"Finite field equation of Yang--Mills theory". United States. doi:10.1063/1.524453.
```

```
@article{osti_5728641,
```

title = {Finite field equation of Yang--Mills theory},

author = {Brandt, R A and Wing-Chiu, N and Yeung, W},

abstractNote = {We consider the finite local field equation -)(1+1/..cap alpha.. (1+f/sub 4/))g/sup munu/D'Alembertian-partial/sup ..mu../partial/sup ..nu../)A/sup nua/ =-(1+f/sub 3/) g/sup 2/N(A/sup c/..nu..A/sup a/..mu..A/sub ..nu..//sup c/) +xxx+(1-s)/sup 2/M/sup 2/A/sup a/..mu.., introduced by Lowenstein to rigorously describe SU(2) Yang--Mills theory, which is written in terms of normal products. We also consider the operator product expansion A/sup c/..nu..(x+xi) A/sup a/..mu..(x) A/sup b/lambda(x-xi) approx...sigma..M/sup c/ab..nu mu..lambda/sub c/'a'b'..nu..'..mu..'lambda' (xi) N(A/sup nuprimec/'A/sup muprimea/'A/sup lambdaprimeb/')(x), and using asymptotic freedom, we compute the leading behavior of the Wilson coefficients M/sup ...//sub .../(xi) with the help of a computer, and express the normal products in the field equation in terms of products of the c-number Wilson coefficients and of operator products like A/sup c/..nu..(x+xi) A/sup a/..mu..(x) A/sup b/lambda(x-xi) at separated points. Our result is -)(1+(1/..cap alpha..)(1+f/sub 4/))g/sup munu/D'Alembertian-partial/sup ..mu../partial/sup ..nu../)A/sup nua/ =-(1+f/sub 3/) g/sup 2/lim/sub xiarrow-right0/) (lnxi)/sup -0.28/2b/(A/sup c/..nu.. (x+xi) A/sup a/..mu..(x) A/sub ..nu..//sup c/(x-xi) +epsilon/sup a/bcA/sup muc/(x+xi) partial/sup ..nu../A/sup b//sub ..nu../(x)+xxx) +xxx)+(1-s)/sup 2/M/sup 2/A/sup a/..mu.., where ..beta.. (g) =-bg/sup 3/, and so (lnxi)/sup -0.28/2b/ is the leading behavior of the c-number coefficient multiplying the operator products in the field equation.},

doi = {10.1063/1.524453},

journal = {J. Math. Phys. (N.Y.); (United States)},

number = ,

volume = 21:3,

place = {United States},

year = {1980},

month = {3}

}