Impact of advanced systems on LMFBR accident analysis code development
In order to investigate the ability of an advanced computer, using currently available software, to handle large LMFBR accident analysis codes, the SAS3D code has been run on the NCAR CRAY-1. SAS3D is a large code (56,000 Fortran cards) using many different physical models and numerical algorithms, no one of which dominates the computing time. Even though SAS3D was developed on IBM computers, remarkably little effort was required to run it on the CRAY-1. Making limited use of the CRAY-1 vector capabilities, it runs a factor of 2.5 to 4 times faster on the NCAR CRAY-1 than on the ANL IBM 370-195. With minor modifications, an additional 20 to 30% speed improvement on the CRAY-1 is achieved. In the current process of completely re-writing SAS3D to make SAS4A, much of the coding is being vectorized for the CRAY-1 without sacrificing IBM, CDC 7600, or UNIVAC performance and portability. An initial SAS4A test case runs a factor of 7.1 faster on the CRAY-1 than on the IBM 370-195.
- Research Organization:
- Argonne National Lab., IL (USA)
- Sponsoring Organization:
- USDOE
- DOE Contract Number:
- W-31109-ENG-38
- OSTI ID:
- 5715686
- Report Number(s):
- CONF-790902--3
- Country of Publication:
- United States
- Language:
- English
Similar Records
Evaluating computer program performance on the CRAY-1
Implementing ASPEN on the CRAY computer
Related Subjects
210500 -- Power Reactors
Breeding
22 GENERAL STUDIES OF NUCLEAR REACTORS
220900* -- Nuclear Reactor Technology-- Reactor Safety
ACCIDENTS
BREEDER REACTORS
COMPARATIVE EVALUATIONS
COMPUTER CALCULATIONS
EFFICIENCY
EPITHERMAL REACTORS
FAST REACTORS
FBR TYPE REACTORS
LIQUID METAL COOLED REACTORS
LMFBR TYPE REACTORS
REACTOR ACCIDENTS
REACTOR SAFETY
REACTORS
SAFETY