
MASTER
IMPACT OF ADVANCED SYSTEMS

ON

LMFBR ACCIDENT ANALYSIS CODE DEVELOPMENT

by

F. E. Dunn and J. M. Kyser

Prepared for

..---------DISCLAIMER----------,

This book was prepared as an account of work sponsoredt~:r:tJ,:,r;':~ ~~e~~;~~~m~~:,e;:,o:;e::~~
Neither the Un1ted States Government nor any age~cv

1
I' b"l:ty or responsibility for the accuracy,

warranty. express or implied, or assui::r=t~on:aap;ra~~s. product, or process disclosed. -~r
completeness, o_r usefulness of a~:frin rivately owned rights. Reference herein to anv_ specifiC

represents that liS use v.ould not 1. : ~rade name, trademark, manufacturer, or otherw1se, ~
commercial product, ~rocess, 0~ serv'C:: ~orsement, recommendation, or favoring by the Un1ted
not necessarily constitute or ImP:~~:! The views and opinions of authors expressed herein do not

~:~:,~;~:::;' r;;l;~h= the Uni;ed States Government or any agency thereof.

Scientific Computer Information Exchange

Livermore, California

September 12-13, 1979

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Operated under Contract W-31-109-Eng-38 for the

U. S. DEPARTMENT OF ENERGY '"~Tn ·n . ocr. ENri3UN

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the
terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities
Association and The University of Chicago, the University employs the staff and operates the Laboratory in
accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University

The University of Kansas
Kansas State University
Loyola University of Chicago
Marquette University

The Ohio State University
Ohio University

Case Western Reserve University
The University of Chicago
University of Cincinnati The University of Michigan

Michigan State University
University ot Mmnesota
University of Missouri
Northwestern University
University of Notre Dame

The Pennsylvania State University
Purdue University
Saint Louis University

Illinois Institute of Technology
U ni v~:-1 ~ity uf Illiuuis

Southern Illinois University
The University of Texas at Austin
Washington University Indiana University

The University of Iowa
Iowa State l JniVf~rsity

Wayne State University
The University of Wi~wusiu-Madisou

r---------------NOTICE----------------

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the
United States nor any agency thereof, nor any of their
employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any tltinl party's
use or the results of such use of any information, apparatus,
product or process disclosed in this report, or represents that its
use by such third party would not infringe privately owned
rights. Mention of c.ommf'rcial products, their manufacturers,
or their suppliers in this publication does not imply or connote
approval or disapproval of the product by Argonne National
Laboratory or the United States Government.

• •

,•

..

I.

· e.has been authored
The submitted manuscnP , Gov'trnment
bY a contractor of the wu:il-109-ENG-38.

nder contract No. .
u d' IV the U S Government retams a
Accor mg • · · . to publish
nonexclusive, royalty·free license .
or reproduce the published form of t~IS
contribution, or allow others to do so, or

~U.:_. s:-~G~o:v:er~n:_:m:e~nt=p~u~r~po~se:-s_. =-:-:--:--::=--:-----::,',
. '·

IMPACT OF ADVANCED SYSTEMS ON
LMFBR ACCIDENT ANALYSIS CODE DEVELOPMENT

F. E. Dunn and J. M. Kyser
Reactor Analysis and Safety Division

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, IL 60439 U.S.A.

ABSTRACT

In order to investigate the ability of an advanced computer, using currently avail­
able software, to handle large LMFBR accident analysis codes, the SAS3D code has been
run on the NCAR CRAY-1. SAS3D is a large code (56,000 Fortran cards) using many differ­
ent physical models and numerical algorithms, no one of which dominates the computing
time. Even though SAS3D was developed on IBM computers, remarkably little effort was
required to run it on the CRAY-1. Making limited use of the CRAY-1 vector capabilities,
it runs a factor of 2.5 to 4 times faster on the NCAR CRAY-1 than on the ANL IBM 370-
195. With minor modifications, an additional 20-30% speed improvement on the CRAY-1
is achieved. In the current process of completely re-writing SAS3D to make SAS4A, much
of the coding is being vectorized for the CRAY-1 without sacrificing IBM, CDC 7600, or
UNIVAC performance and portability. An initial SAS4A test case runs a factor of 7.1
faster on the CRAY-1 than on the IBM 370-195. On either computer, this .SAS4A case runs
appreciably faster than a corresponding SAS3D case, indicating that there can be sig­
nificant benefits from using vectorizable coding, even on a non-vector computer. It
appears that even though the one-dimensional models in SAS3D strain the capacity of
ANL's current computer~, an advanced computer such as a CRAY-1 would make it feasible
to_ replace :na!:j' !.-D :::~dels wit!-: 2-D :::- 3-D models.

INTRODUCTION

The SAS series of computer codesl,
2,3,4 are used to analyze hypothetical
accidents in Liquid Metal Cooled Fast
Breeder Reactors (LMFBRs), as well as Gas
Cooled Fast Reactors (GCFRs). All of the
existing codes in the SAS series, except
for the original SASlA, have been capable
of representing a reactor core with a
quasi-three-dimensional treatment which
uses coupled one-dimensional models to ·
approximate the real three-dimensional
system. The current representation is
adequate for many cases; but for some
phenomena, local two-dimensional or three-.
dimensional effects occur which can not be
handled adequately with the current SAS
one dimensional models. More detailed
two- or three-dimensional models would
probably require significantly more com­
puter time than the current models. Even
with the current models, a detailed whole
core analys~o ~it~ the SAS3D code can
st~ain the capacity of the current IBM
37Q-195 and IBM 3033 computers at Argonne
National Laboratory (ANL); indicating
that it may be desirable or necessary to

consider the use of more advanced com­
puters if more detailed models are needed.
Therefore, an effort was undertaken to
address two main questions. First, how
much effort would be required to get the
SAS3D code, which is the current produc­
tion version in the SAS series, to run on
an advanced computer? Would extensive
re-writing of the code be necessary?
Second, since the next SAS code, SAS4A,
is currently being written frow scratch,
as opposed to adding new modules onto
SAS3D, can SAS algorithms and coding be
modified so as to vectorize on a vector
machine without sacrificing IBM, CDC 7600,
or UNIVAC performance or portability?
Under a grant from the National Center
f~r Atmospheric Research, computer time
on the NCAR CRAY-1 computer was available
for this project.

SAS CODES

GENERAL DESCRIPTION

The SAS codes have been developed

..

_,.··:.

!i

to analyze the initiating phases of hypo­
thetical accidents in LMFBRs or GCFRs.
SAS3D starts with steady-state calcula­
tions to determine the initial co.nditions
in the reactor, usually normal operating
conditions. Then transient accident cal­
culations are made for a user-specified
event, such as loss of power to the pri­
mary coolant pumps, or insertion of
reactivity at a user specified rate.

In an LMFBR or a GCFR, the reactor
core contains long, narrow fuel pins,
which are steel tubes (cladding) con­
taining fuel pellets plus a gas plenum
above or below the fuel to hold the gas­
eous fission products released during ir­
radiation of the fuel. The fuel pins are
arranged in hexagonal airays within fuel
subassemblies, with. coolant flowing in the
axial direction between the pins. The
subassemblies have steel, hexagonal shaped
outer duct walls. The ducts are somewhat
longer than the fuel pins to allow room
above and below the pins for flow orifices
and instrumentation. Typically, there are
217 fuel pins, each 1/4 inch in diameter

.and about 8 feet long, in a fuel subassem­
bly which is about 12 feet long. There
are between 75 and a few hundred subassem­
blies in a reactor core.

' Tlie geometry used by SAS3D to repre­
sent the reactor corP. r.nnsists of a number
of "channels", where each channel repre­
sents a fuel pin and its associated

.coolant.· Usually~ SAS channel is used
to represe~t a subassembly or a group of
similar subassemblies. In this case, the
fuel pin represents an "average" pin in
the subassembly. Coolant flow in a SAS
channel is only in the axial direction,
and heat flow in a pin is calculated only
in the ra.dial direction. Because of the
very large length-to-diameter ratio of the
fuel pins, axial heat conduction within.
the fuel pin or the coolant is negligible.
The coolant removes heat by convection.

Each SAS channel is divided into a
number of axial nodes. Typically about 20
axial nodes are used to represent the
fueled part of the pin, and another 10-15
nodes are used to represent the rest of
the subassembly. At each axial node in
the fuel section, about iO radial nodes
are used in the fuel and 3 radial nodes
are used in the clad. One radial node is
used for the coolant, and one or two
radial nodes are used for the "structure",
which represents both the subassembly duct
wall and the wrapper wires or grid spacers·

which keep the pins in pos1t1on. Above
and below the fueled section, only a few
radial nodes are used.

With this channel treatment, SAS3D
calculates steady-state and transient tem­
peratures in the fuel, clad, coolant, and
structure. Sodium boiling; clad melting,
relocation, and freezing; fuel melting,
relocation, and freezing; and interactions
between molten fuel and liquid coolant are
calculated. Also, the stresses and strains
in fuel pins prior to pi~ failure, the
amount of fission product gas in the fuel
and its contribution to fuel relocation
after pin failure, and the pressures and
flow rates of the coolant in the core and
around the primary coolant loop are cal­
culated.

ADVANTAGES AND LIMITATIONS OF THE SAS
CHANNEL REPRESENTATION

One big advantage of the SAS channel
representation is that it provides a
.detailed, three-dimensional representation
of the reactor core even though only one­
dimensional equations are ·solved; and the
solution of one-dimensional equations is
usually much faster than the solution of
multi-dimensional equations. Detailed
radial and axial temperature profiles in
the fuel pin are obtained by solving a one
dimensional radial heat transfer equation
at each axial node. Coolant Lewperaturco
and flows are obtained by solving one
dimensional equations for the axial
direction. Fuel and cladding reloca-
tion are calculated in the axial direc­
tion. Different subassemblies or groups
of subassemblies can be represented by
different SAS channels, providing detailed
axial descriptions at a number of radial
and azimuthal locations in the core.

SAS3D only accounts for limited
coupling between SAS channels, but this
corresponds to the limited interaction
between subassemblies in a reactor. The
duct walls prevent coolant flow between
subassemblies, except that the subassem­
blies all receive their coolant from a
common inlet plenum and all discharge
their coolant into a common outlet plenum.
The common inlet and outlet plenums are
accounted for in SAS3D. The different
parts of the core are coupled neutroni­
cally, and this neutronic coupling is
accounted for in the SAS3D neutronics
calculations. There is some heat flow
between the duct walls of adjacent
subassemblies, whereas SAS3D uses an

adiabatic boundary at the outside of the
SAS "structure". Accounting for heat
flow between subassemblies by computing
heat transfer between the structures in
different SAS channels could be done in
a fairly straight-forward manner without
changing the basic SAS channel represen­
tation.

The main limitation of the'SAS chan­
nel representation is that it.does not
account for any differences between fuel
pins or coolant sub-channels within a
subassembly. In reality, there are often
power skews across a subassembly, the
coolant sub-channels next to the duct
walls are somewhat larger than those in
the interior of the subassembly, and the
duct walls have heat capacity and tend
to act as limited heat sinks during a
transient. The net result is that the
interior of a subassembly is usually
hotter than the edge, and sometimes one
side is hotter than another.

The use of an. "average pin" represen­
tation in SAS3D tends to average-out many
of the variations within a subassembly and
often gives good results. For instance,
predictions of the boiling model in SAS3D
usually agree reasonably well with the
results of multiple-pin boiling tests.5,6
On·the other hand, ~tis often necessary
to aeeeunt for r.~.rH al i.n~nherence within
a pin bundle to obtain satisfactory agree­
ment with clad melting and re-location
experiments.7 A really adequate treatment
of fuel relocation probably also requires

· accounting for radial incoherence within
a subassembly.

POSSIBLE IMPROVEMENTS AND COMPUTER LIMITA­
TIONS

Because of the above mentioned limita­
tions of the current SAS3D "single pi~'
representation of a subassembly, it wou'lt!
be desirable to have a "multiple pin"
representation in which a subassembly is
represented by a number of pins or pin
groups with connected coolant channels.

One problem with developing multiple
pin models for whole-core accident analysis
is that even the one-dimensional single pin
models in SA53D strain the capacity of the
current ANL computers. A 33 channel SAS3D
case ca•l take 6 hours of computer time on
the IBM 370-195 or IBM 3033. It also
requires about 3 megabytes of memory on
an IBM computer. Even a 1 channel case
requires about 800 kilobytes of memory.

On a CDC 7600 .the same 33 channel case
would require about 3 hours and almost
400,000 words of LCM storage. These
computer times are almost entirely CPU
times, since SAS3D does relatively little
I/0 in a big run. If multiple-pin models
were used, the running times would proba­
bly increase at least linearly with the
number of pins used per subassembly, and
the increase may be proportional to the
square of the number of pins.

Some computer codes· already exist
for treating some aspects of intra­
subassembly incoherence. Because of com­
puter limitations, these codes are usually
limited to treating single subassemblies
instead of whole cores, and they are lim­
ited in the phenomena that they treat.
For instance, both the COBRA-3 code8,9 and
the COMMIX-1 codelO can compute detailed
coolant temperature distributions within
a subassembly. Either steady-state or pre­
voiding transient· calculations can be made
by these codes. On the IBM 370-195 it is
estimated that COMMIX-1 would require about
2.5 hours to compute the steady-state tem­
peratures in all of the coolant sub-channels
of a 217 pin subassembly. COBRA-3 can take
20 minutes to calculate steady-state coolant
temperatures for 12 coolant sub-channels.

Because of the above mentioned com­
puter limitations, it is unlikely that
maily pin (217 piu) modelo will bi!. nse<l in
whole-core LMFBR accident analysis codes
in the near future, even if significantly
faster computers are used. On the other
hand, a reasonable increase in computer
speed would make it feasible to use "few
pin" models for whole-core analysis. A
well developed model using 2-5 pin groups
to represent a subassembly would probably
be quite adequate for most purposes.

NUMERICAL ALGORITHMS AND CODING ASPECTS

SAS3D is a relatively large code, and
SAS4A will be larger. The source deck for
SAS3D contains about 56,000 FORTRAN cards.
The main reason that SAS3D is large is
that it contains a number of separate, but
coupled, modules for computing different
aspects of an accident: heat transfer,
coolant flow, fuel pin mechanics, sodium
boiling, clad relocation, fuel relocation,
fuel-coolant interactions, and neutronics.

The equations solved by these mod­
ules are all different, but there are some
aspects that are common to most of the
modules. Finite differencing in both

,·

space and time is used. A number of
discrete nodes are used to obtain spatial
variations, and the transient time behav-·
ior is obtained using discrete time steps.
Typically, the algorithms are set up to
determine the conditions at each node at
the end of a time step, starting from
known conditions at the beginning of a
time step. In general, the equations
solved are non-linear, although. they are
linearized across a time step. Semi­
implicit or fully implicit schemes are
often used, leading to the simultaneous
solution of linear equations with coef­
ficients that are re-calculated each time
step. The resulting matrices are banded,
often tri-diagonal. The calculation of
the coefficients usually takes longer than
the actual solution of the matrix equa­
tions. A significant .amount of computer
time is used in obtaining physical and
thermal properties as a function of tem­
perature, and sometimes as a function of
pressure or other variables, by linear
interpolation from tables or by the
evaluation of numerical correlations.

Since the SAS channels are only loosely
coupled, SAS3D works on one channel at a
time, completing a time step for one or
more modules for .one channel before going
on to the next channel. The arrays used
for each channel a~e stored in a few "data
packs". The data packs for a channe 1 RTP

moved into working memory while the code
is doing the calculations for that channel,
and then moved out to a storage area.
Thus, every time step the data pa~ks for
each channel are moved into and out of the
working area a few times, and each code
module is entered at least once for each
channel in which the module is active.
They are.often 1000 or more time steps in
a run.

On an IBM or CRAY-1 computer, the .
storage area is in main memory. On a CDC
7600, working memory is in SCM, and the
storage area is in LCM. There are about
9000 words per channel in the data packs.

. In principal the storage area could be on
disk, but in practice it is best to have
the whole calculation core-contained.
Storing either coding overlays or data
packs on disk adds tremendous amounts of
I/0 time and increases the total running
time by about an order of magnitude.

One important aspect of SAS3D is that
no one small area of the code accounts for
the bulk of the computing time, and no one
subroutine accounts for more than about 15%

of the total time on the IBM 370-195. The
computing time is spread through many mod­
ules and many subroutines. Therefore, dra­
matic improvements in running time can not
be obtained by improving a single algorithm
or a single subroutine. In order for the
code as a whole to run well, a large number
of subroutines must each run well.

CODE PORTABILITY

SAS3D is currently being used by many
organizations in the U.S and abroad on CDC,
IBM, and UNIVAC computers. Therefore, it
was written with yortability in mind. ANSI­
standard FORTRANl is used almost entirely,
and machine-dependent features are avoided.
The few machine-dependent features that are
required are mainly isolated in a few sepa­
rate subroutines.

The UPDAT Code. One feature that cont.rib­
utes to both the .portability and the main­
tainability of SAS3D is the use of the
UPDAT code to modify the SAS3D source files.
UPDAT, which was written at ANL by R. George,
has many of the features of CDC's UPDATE
code,l2 such as inserting and deleting
cards, and inserting COMDECKS. In the
SAS3D source, the COMMON blocks are listed
only once, and the COMDECK feature is used
to insert the common blocks in each sub­
routine where they are needed. UPDAT is
also used to m~ke corrections or modifica-
tions to the code. ·

Programs with features similar to
those of UPDATE have been available on
IBM computers, but the IBM codes and. CDC's
UPDATE use different directives and require
different input. The UPDAT code, which
was written in FORTRAN, runs on IBM, CDC,
and UNIVAC computers, and all versions use
the same input. Therefore, the same UPDAT
input deck can be used to modify or cor­
rect the IBM, CDC, and UNIVAC versions of
the code.

RUNNING SAS3D ON THE CRAY-1

Considering the size of the SAS3D
code, it was relatively easy to get the
code running on the NCAR CRAY-1. A few
routines known to be machine dependent had
to be modified, but the modifications were
straight-forward. Also, the Cray Fortran
Compilerl3 (CFT) would not compile a few

. statements, but these were mainly cases of
violating the ANSI FORTRAN standards.

'·

,·

/
!J

The actual process of putting SAS3D
on the NCAR computer and running it was
all done from ANL using a remote batch
terminal. The main steps in this process
were as follows.

1. A FORTRAN source tape was written at
ANL and sent to NCAR. This tape contained
3 files. The first file was the source
for the UPDAT program. The second file
contained the SAS3D COMMON blocks, and
the third file was the SAS3D source file.

2. The UPDAT program was compiled after
the necessary modifications to the UPDAT
source were made using the system UPDATE
utility.

3. UPDAT was used to insert the common
blocks into the SAS3D routines and to
make modifications to the SAS3D source.

4. The resulting SAS3D source code was
compiled, and both the source file and
the object. file were stored in permanent
datasets on the CRAY-1 disks.

5. Sample SAS3D cases were run, and
the results were compared with IBM and
CDC results ..

The CDC version of the export ver­
.sion of UPDAT was sent to NCAR. · Some
changes to thio code t~er11 reo:p.d.t"~tl t.n
get it to run on the CRAY-1. Frist,
some machine-depelluent constants h.::td
to be changed to. account for differences
in word length and data representation.
The CDC 7600 uses.ten 6 bit characters
per 60 bit word, whereas the CRAY-1 uses
eight 8 bit characters per 64 bit word.
Fortunately these constants were all set
at the same place in DATA statements, so
it was easy to change them. Second, in
one spot the CRAY-1 version required the
FORTRAN function SHIFTR instead of the .
SHIFT function used in the CDC version.
Third, the UPDAT directive *END happens
to correspond to a NCAR control card, so
in UPDAT this directive was changed to
*EEND by changing one DATA statement.

The CDC 7600 version of SAS3D was
sent to NCAR. This version is overlayed,
with a special overlay routine that stores
overlays in LCM rather than on disk.
Since the NCAR CRAY-1 has plenty of main
memory, and no LCM, the CRAY version of
SAS3D w.::ts not overlayed. Thus, all of
the OVERLAY and CALL OVERLAY cards were
removed, as well as subroutine OVERLAY.

Another known machine-dependent aspect
was the data pack storage area and the rou­
tines that store and retrieve data packs.
On the CDC 7600, the routines READEC and
WRITEC, written in COMPASS, are used to
store blocks of data in LCM when they are
not being used, and to put them back in
SCM when they are needed. On the ANL IBM
machines, the data packs are stored in main
memory, using specially optimized FORTRAN
versions of READEC and WRITEC. On the
CRAY-1, the data packs are stored at the
end of blank common, using simple FORTRAN
versions of READEC and WRITEC. The CRAY
FORTRAN compiler (CFT) automatically vec­
torizes these versions of READEC and WRITEC.
Since the CRAY loader loads coding from the
bottom of memory up, with blank common at
the end of the coding, and since I/0 buffers
start at the top of memory and work down,
any unused memory is between the end of
blank common and the bottom of the 1/0
buffers. Therefore, the.effective length
of the data pack ·storage area at the end
of blank common can be set at run time by
specifying the total job memory size to
correspond to the size of the problem being
run .•

Another machine-dependent aspect of
SAS3D is the timing routine TLEFT. For
the CRAY-1, a TLEFT routine that sets 'J.'~FT

. to 1,000,000-lOO.*SECOND(l.O) was used,
where SECOND is the elapsed. CPU time.
This version gives the correct timing of
various parts of the code, but it does not
give an accurate warning when the code is
approaching a time limit.

Some accumulated SAS3D modifications
were also incorporated into the CRAY-1
version. These modifications are minor
items that correct some. known non-standard
usages in the code.

The first attempt to compile SAS3D
on the CRAY-1 turned up only 6-8 FORTRAN
errors. One error was in a DATA statement
in subroutine RESTAR. The IBM version of
this statement uses a 4H specification,
the CDC version uses lOH, and the CRAY
version requires 8H. The other errors
were all cases of non-standard separators
in FORMAT statements. The CRAY compiler
does not allow two consecutive comma
separators or ,/, in a FORMAT statement.
Apparently the IBM and CDC systems ignore
spurious commas in FORMAT statements.

After SAS3D compiled, the first at­
tempt to run .a case turned up one last
problem. Subroutine WRITEI is a multiple-

.·.·,.

·.i

entry routine, even though it should have
been written originally as two separate
single-entry routines. The CRAY compiler
uses an IBM-type convention for passing
arguments to multiple entry points,
whereas the CRAY version of SAS3D started
as a CDC version, with a different treat­
ment of multiple entry points.

After the entry point problem was
corrected, a number of SAS3D cases have
been run successfully without encountering
any· additional problems.

Linear Interpolation Routines

Although the Cray Fortran Compiler -
will automatically vectorize part of the
SAS3D coding, the FORTRAN coding in three
linear interpolation routines, INTIRP,
INTERP, and INTRP, will not vectorize.
These routines provide an area in which
moderate improve·ments in CRAY performance
can be achieved with relatively little
effort, since they are small routines
that account for a moderate fraction of
the total running time.

INTIRP scans a table of Y as a func­
tion of X. It obtains the result Y1,
corresponding to the input value X1, by
linear interpolation between the appro­
priate table values. INTERP is the same
as ·INTllU', exeepr that INTERP is pasocd
an extra parameter, !FUEL, the fuel type;
and the tables used by INTERP contain
entries for each fuel type, i.e., theY
array has two subscripts, Y(J, IFDEL).
INTRP takes a whole array of input vari-

.... ables, Xl(I), and an array of fuel types,
IFUELI(I), and it computes a whole array
of output results, Yl(I).

Timing studies on both the IBM 370-
195 and the CDC 7600 have shown that
INTIRP and INTERP spend more time scanning
the tables to find the appropriate table
entries than they do in the actual inter-

··· polation. INTIRP and INTERP always start
scanning from the start of the table.
INTRP starts scanning at the start of the
table for the first variable in the input
array. For later values in the imput array,
INTRP starts scanning the table at the
location where it found the previous value.

The table scanning loop in these rou­
tines was written in a somewhat convoluted
manner in order to get into loop-mode on
the IBM 370-195, since significant speed
improvements are often achieved in loop­
mode. A simple DO loop containing an IF

statement that jumps out of the loop when
the appropriate table location has been
found will not run in loop-mode on the 195.
The logic required to achieve loop-mode on
the IBM machine degrades the performance
on CDC and CRAY computers, both of which
will run the simple DO loop version as a
simple in-stack loop.

The Cray Fortran Compiler uses only
scalar instructions to compile either the
convoluted scanning loop or the simple
scanning loop in the interpolation rou­
tines. Therefore, CAL verisons of these
routines were written to use the vector
compare instructions on the CRAY-1. Also,
the CAL version of INTRP performs the ac­
tual interpolation calculations in vector
mode.

Timing Results for Interpolation Routines.
For timing purposes a simple driver pro­
gram was written _to call-the interpolation
rout{nes with the proper arguments. The
tables used for this program had a length
of 20, which is typical of the tables used
in SAS3D. An array of 12 values of X1(I)
was used, and these values were distributed
fairly evenly over the tables. The values
used for !FUEL were 1.,1,1,1,2,2,2,2,3,3,3,3.
For timing INTIRP an inner DO loop in the
driver made 12 separate calls to the rou- ·
tine using the appr.opriate values for X1
and IFIJF.T.. Fnr timing INTRP, one call was
made to obtain an array of 12 results. In
order to obtain running times large enough
to measure, an outer DO loop was used to
call INTRP 1000 times or to execute the
inner loop for INTIRP 1000 times. Thus,
the measured times are for 1000 calls to
INTRP or 12,000 calls to INTIRP. Since
INTERP is very similar to INTIRP, it was
not timed.

Table 1 lists the running times mea­
sured for these routines. The simple DO
loop for scanning does somewhat better
than the original coding on any computer.
One call to INTRP with an array of 12
values takes less time than the correspond­
ing 12 calls to INTIRP, partly because sub­
routine linkage overhead accounts for a
moderate fraction of the total INTIRP time,
and partly because of the more.efficient
table scanning in INTRP. The FORTRAN ver­
sions of these routines run a factor of
2-2.5 times as fast on the CRAY-1 as on
the IBM computers. The use of t:he vector
compare instructions, as well as generally
tighter coding, in the CAL version improves
the CRAY speed by an additional factor of
3-4.

Table 1. Timing results for interpolation
routines.

Computer, CPU time (seconds) for
Comeiler 12,000 results

INTRP INTIRP
original simple
coding scanning

DO looe

IBM 370-195 .165 .366 .320
FTH,a OPT=2

IBM 3033 .160 .305
FTH, OPT=2·

CDC 7600 .121 .224 .165
FTN4,b OPT=2

CRAY-1 .067 .178 .127
CFT

CRAY-1 .021 .032
CAL

aiBM's Fortran H compiler
bene's Fortran Extended, Version 4 com­

piler, as implemented on the Lawrence
Berkeley Laboratory Computers.

SAS3D TIMING RESULTS

Timing comparisons for the SAS3D code
are complicated by two factors. First,
there is no one small section of the code
that accounts for the g~P~t. hulk of the
computing time. It is necessary to run
the whole code, or a Gignificant fraction
of the code, in order to get meaningful
timing comparisons. Second, there are
many types of cases in which it is not
possible to get exactly the same results
on different computers. In many cases,
differences in running times between com­
puters are due to both differences in com­
puter speeds and differences in computa­
tional paths.

Three different SAS3D cases were run
on the CRAY-1. The first case was a
limited case which exercised only part of
the code, but it was a case for which the
same computed results are achieved on all
computers, so that exact timing compari­
sons are meaningful. This was the first
300 time steps of a 1-channel low power
boiling case (LOWBLA). This run was ter­
minated before boiling initiation, so it
only tested the pre-boiling parts of the
code.

The second case was a more extensive
1-channel case: 1000 time steps for chan­
nel 1 of a 33-channel CRBR transient under­
cooling case (1-channel test). This case
gets into sodium boiling, clad relocation,
and fuel relocation (SLUMPY). The results
obtained on different computers for this
case were not identical, but they were
quite similar; and the computational paths
were quite similar.

The third case was .the standard SAS3D
3-channel test case (3-channel test). This
case was run mainly to test the code ·rather
than to get timing comparisons. This case
tests most of the options in the code. It
is an extremely touchy case with an appre­
ciable amount of positive feed-back. Any
small deviation, due to factors such as
round-off error, tends to grow as the run
progresses, and it is not possible to get
the same results for this case on different
computers. Even the IBM.370-195 and the IBM
3033 give different results for this case.

Table 2 gives the running times on
various computers for these cases. Also,
given in parentheses are the relative
speeds, with the IBM 370-195 speed defined
as 1 for each case.

Table 2. SAS3D timing

CPU time,
Com12uter (Kelative

LOWBLA,
1 channel,
300 steps,
no boiling

IBM 370/ 44.1
195 (1. 0)

IBM 3033 43.8
(1.01)

CDC 7600 19.4
(2.27)

CRAY-1 11.8
CFTb (3.73)

CRAY-1 9.7
CALC (4.55)

comparisons.

seconds
speed, 1/CPU Limt:)

1 channel 3-channel
test,
1000
steps

333.3
(1. 0)

309.1
(1.08)

162.9
(2.05)

129.6
(2.57)

95.5
(3.49)

testa

740.0
(1. 0)

453.9
(1. 63)

186.2
(3. 97)

aTiming comparisons are not very
meaningful for the 3-channel test case.
bAll-Fortran version.
CCAL versions for three interpolation

routines, everything else Fortran.

SAS3D runs slightly faster on the
IBM 3033 than on the 195, about twice as
fast on the CDC 7600 as on the 195, and
a factor of 2.5 to 4 times as fast on the
CRAY-1 as on the 195.

The only area in which performance
improvement for SAS3D on the CRAY-1 was
investigated was the three linear inter­
polation routines. Use of the CAL ver­
sions of these routines led to an improve­
ment of 20% - 35% in the overall running
time of SAS3D.

SAS4A

The initial version of SAS4A contains
· mainly steady-state and pre-voiding tran­
sient heat transfer and coolant flow rou­

.tines. Other modules are being added as
they are developed, but this initial ver­
sion is the only one that has been run on
the CRAY-1.

There are two main differences be­
tween these SAS4A.pre-voiding routines and
the corresponding SAS3D routines. First,
the pre-voiding SAS4A module contains rou­
tines that have been especially tailored
for prevoiding transient calculations,
whereas in SAS3D the· corresponding routines
are generalized routines that handle the
whole transient. Second, the algorithms
used in the pre-voiding ~outines were modi­
fied somewhat to promote vectorization.
This did not require major changes in
algorithms; mainly it involved re-ordering
of calculations and sometimes the·saving
of arrays of interim results. Also, some
changes in programming style were required
to eliminate cases where the basic algorithm
allowed vectorization but programming style
precluded it.

Most of the pre-voiding transient
coolant calculations vectorized easily •.
These calculations consist mainly of obtain­
ing coolant properties at each axial coolant
node by evaluating parametric fits. The
fits are all single range fits containing no
branching, and properties for all coolant ·
nodes can be calculated in parallel. Also,
.since typically about 30 coolant nodes are
used, vector lengths of about 30 were
achieved.

In cases where a complete calculation
could not be vectorized, part of the cal­
culation often could. For instance, the
calculation of the coolant pressure at node
J requires the value from node J-1, so the
calculation could not be vectorized. In

this case, the calculation of the node­
to-node pressure differences would vec­
torize, and this calculation accounts for
most of the computing time in this area.
Then a small non-vectorized loop sums the
differences to give the final results.

Vectorizing the heat transfer rou­
tines was more difficult. For each axial
node, the temperatures at all radial nodes
are solved for simultaneously by solving
a tri-diagonal matrix equation. Many of
the calculations used to obtain the coef­
ficients of the matrices were vectorized,
but the vector lengths were usually· no
longer than the number of radial nodes,
which typically ranges from 4 or 5, above
and below the fueled region, to about 17
in the fueled region. The tri-diagonal
matrix solution itself does not vectorize
in the pre-voiding mdule, although in the

.voiding module the corresponding matrix
·solution might be vectorized by solving
for all axial nodes simultaneously. In
the pre-voiding calculation, the computed
coolant temperature at axial node J is
needed to obtain some of the coefficients
for node J+l; but in the voiding module,
the coolant temperatures are calculated
separately in the coolant routines, and
in the fuel pin heat transfer routines
there is no coupling between axial nodes.

SAS4A TIMING RESULTS

A non-voiding case with 1000 time
steps was timed using the initial version
of SAS4A. In addition to total running
times, a timing distribution by subroutine
was also obtained. For the timing distri­
bution, the CFT timing trace was used on
the CRAY-1, the PROGLOOK feature was used
on the ANL IBM 370-195, and a combination
of the SNOOPY routines plus a number of
calls to SECOND was used on the CDC 7600.
For this case, the steady-state initial­
ization accounts for less than 1% of the
running time, so it was mainly the pre­
voiding transient routines that were timed.
Tables 3 and 4 give these timing results.

These timing results indicate that
SAS4A runs about six times as fast on the
CRAY-1 as on the IBM 370-195; with CAL
versions of the interpolation routines,
the speed ratio increases to seven. The
CDC 7600 version also runs appreciably
·faster than the IBM version, but the CRAY-1
version still runs a ~actor of 2.1 to 2.5
times as fast as the CDC 7600 version.

··.::

. ,-

·Table 3. SAS4A timing comparisons.

Computer

IBM 370-195

IBM 3033

CDC 7600

CRAY-1, CFTa

CRAY-1, CALb

CPU time
seconds

43.6

46.5

15.49

7.37

6.14

Relative speed
1/CPU time

1.0

.94

. 2.8

5.9

7.1
8All-Fort~an version.
heAL versions of interpolation routines,

CFT for rest of code.

Table 4. Detailed breakdown of SAS4A
timing.

Program
area

heat transfer,
except
matrix
solution

tnAt;rix
solution

interpolation
routines

coolant
routines

log, exp, xY

READEC,
WRITt:C,

data pack
movement

CPU time,
(percentage

IBM CDC
370-195 7600

9.98
(23%)

1.81
(4%)

4.38
(10%)

2.03
(5%)

6.85
(16%)

9.22
(21%)

4.54
(29%)

1.41
(9%)

3.46
(22%)

1.19
(8%)

1.84
(12%)

.56
(4%)

seconds
of total)

CRAY-1
CFT CALa

2.01
(27%)

.51
(7%)

1.91
(26%)

.42
(6%)

b

.32
(4%)

2.01
(33%)

.51
(8%)

.68
(11%)

.42
(7%)

b

.32
(5%)

formatted I/0 8.41
(19%)

2.38 2.10
(15%). (29%)

2.10
(34%)

other

total

.92
(2%)

.11
(1%)

.10
(1%)

.10
(2%)

43.6 15.49 7.37 6.14
(100%) (100%) (100%) (100%)

seAL versions of INTRP, IINTIRP, CFT for
rest of code.
bincluded with coolant routines.

Comparisons with the LOWBLA times in
Table 2 for 300 pre-voiding steps show that
SAS4A runs 1000 steps in about the same
ti~e that SAS3D require~ for 300 steps.
About 1/3 of the SAS3D time for this case
was accounted for by the DEFORM module,
which has not been incorporated into SAS4A ·
yet; but the remaining 2/3 of the time is
in routines corresponding to the SAS4A
routines. This indicates that the heat
transfer and coolant routines in SAS4A run
about twice as fast as the corresponding
SAS3D routines. On the CRAY-1, the SAS4A
speed improvement is greater than a factor
of two.

Formatted I/0, mainly printing tran­
sient resQlts, accounted for an appreciable
fraction of the total CPU time for this
case. In 6 seconds of computing on the
CRAY-1, this case printed 213 pages of

·output. For longer runs, it will be
necessary t.o reduce greatly the amount of
print-out per second of computation.

The log and exponential functions are
called by the coolant routines. On the
IBM and CDC computers, and maybe on the
CRAY-1 also, they account for the bulk of
the time spent in the coolant routines.
The coolant routines vectorized well on
the CRAY-1, and thia ahows in the •elative
coolant calculation times. On the CRAY-1,
the coolant routines, i11cluding the Iog
and exponential functions, run about 21
times as fast as on the IBM 370-195, or
about 7.2 times as fast as on the CDC 7600.

The data pack movement is quite a bit
slower on the IBM 370-195 than on either
the CRAY-1 or the CDC 7600. This reflects
the relatively slow speed of the main
memory on the IBM 370-195.

SUMMARY AND CONCLUSIONS

The SAS3D code was run on the CRAY-1
computer with only minor modificaitons to
the code, and it ran reasonably well. On
the CRAY-1, SAS3D runs 3.5 to 4 .. 5 times as
fast as on the IBM 370-195, or about twice
as fast as on the CDC 7600. The IBM and
CDC compilers that are used with SAS3D are
highly developed compilers that produce
well optimized object code, so the perform­
ance of SAS3D on the CRAY-1 is a reflection
of the basic speed of the CRAY-1 hardware,
as well being an indiciation that the CFT
compiler produces moderately efficient
object code.

.-

,·

\
f\

·· ... /

Writing new pre-voiding heat transfer
and coolant flow routines. for SAS4A, using
new algorithms and coding that would vec­
torize where possible, led to significant
speed.improvements on all three computers.
The CRAY-1 version of SAS4A runs about
2.5 times as fast as the CDC 7600 version,
which runs 2.8 times as fast as the IBM
370-195 version. Even the IBM yersion of
SAS4A runs about twice as fast as the cor­
responding IBM version of SAS3D. Some of
the improved speed of SAS4A, as compared
to SAS3D, w~s probably due to the use of
somewhat better algorithms and the elimina­
tion of some unnecessary calculations, but
much of this improvement is probably due
to the fact that coding that vectorizes
on a CRAY-1 tends to run efficiently on
an IBM 370-195 or a CDC 7600. Therefore,
new coding for the SAS codes should be
vectorizable where possible, even if it
is not expected that the.se codes will be
run extensively on vector machines in the
near future.

The performance attained by SAS3D and
SAS4A on the CRAY-1 was partly due to the
ability of the CRAY-1 to use short· vectors
effectively. Many of the vector lengths
in these codes are in the range from 10-20,
and some are as small.as 3 or 4. Other
than block transfers, none of·the vector
lengths is currently greater than 48. The
SAS codes probably would not perform well
on a computer designed for long vectors.

The computing speed attainable on a
CRAY-1 computer should make it feasible to
develop "few pin" models for whole core
accident analysis, if the models are
carefully developed and coded so as to
optimise computer performance. Such cal­
culations may even be feasible on a CDC
7600. Even on a CRAY-1, detailed many pin
(217 pins per subassembly) models would
probably still be restricted to limited,
single subassembly cases because of running
time considerations.

ACKNOWLEDGMENTS

We would like to thank L. Rudsinski
for obtaining computer time on the NCAR
CRAY-1 for this project, and also for his
assistance in getting· SAS3D to the NCAR
computer. This work was performed under
the auspices of the U. S. Department of
Energy.

REFERENCES

1. D. R. MacFarlane, J. C. Carter,
G. J. Fischer, T. J. Heames, N. A.
~Neal, W. T. Sha, C. K. Sanathanan,
and C. K. Youngdahl, ANL-7607 (1970).

2. F. E. Dunn, G. J. Fischer, T. J.
Heames, P. A. Pizzica, N. A. McNeal,
W. R. Bohl and S. M. Prastein,
ANL-8138 (1974).

3. M. G. Stevenson, W. R. Bohl, F. E.
Dunn, T. J. Heames, G. Heppner, and
L. L. Smith, Proceedings of the Fast
Reactor Safety Meeting, Beverly Hills,
CA, (1974), CONF-740401, p. 1303.

·4. J. E. Cahalan, D. R. Ferguson, H. U.
Wider, C. H. Bowers, L. L. Briggs,
F. E. Dunn, J. M. Kyser, L. Mync,
A. M. Tentner, and W. L. Wang, ANS/
ENS International Meeting on Fa~
Reactor Safety Technology, Seattle,
Washington, (1979).

5. G. H6ppner, W. L. Chen, F. E. Dunn;
and M. A. Grolmes, Trans. Am. Nucl.
Soc.,_!!, 213· (1974).

6. I. T. Hwang, T. M. Kuzaz, W. W. Marr,
and K. J. Miles, Trans. Am. Nucl. S0c.,
28, 443 (1978).

7. M. Ishii and W. L. Chen, Trans. Am.
Nucl. Soc., 28, 442 (1978).

8. D. s. Rowe, BNWL-1522-4 (1971).

9. w. w. Marr, ANL-8131 (1975).

10. w. T. Sha, ANL-7796, NUREG/CR-0785
(1979).

11. "American National Standard Program­
ming Language FORTRAN," ANSI x3.9-1978.

12 •.. Update Reference Manual, Control Data
Corporation Publication No. 60342500,
Minneapolis, Minnesota, (1978).

13. CRAY-1 FORTRAN (CFT) Reference Manual,
Cray Research Publication No. 2240009,
Bloomington, Minnesota, (1977).

