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IMPACT OF ADVANCED SYSTEMS ON 
LMFBR ACCIDENT ANALYSIS CODE DEVELOPMENT 

F. E. Dunn and J. M. Kyser 
Reactor Analysis and Safety Division 

ARGONNE NATIONAL LABORATORY 
9700 South Cass Avenue 

Argonne, IL 60439 U.S.A. 

ABSTRACT 

In order to investigate the ability of an advanced computer, using currently avail­
able software, to handle large LMFBR accident analysis codes, the SAS3D code has been 
run on the NCAR CRAY-1. SAS3D is a large code (56,000 Fortran cards) using many differ­
ent physical models and numerical algorithms, no one of which dominates the computing 
time. Even though SAS3D was developed on IBM computers, remarkably little effort was 
required to run it on the CRAY-1. Making limited use of the CRAY-1 vector capabilities, 
it runs a factor of 2.5 to 4 times faster on the NCAR CRAY-1 than on the ANL IBM 370-
195. With minor modifications, an additional 20-30% speed improvement on the CRAY-1 
is achieved. In the current process of completely re-writing SAS3D to make SAS4A, much 
of the coding is being vectorized for the CRAY-1 without sacrificing IBM, CDC 7600, or 
UNIVAC performance and portability. An initial SAS4A test case runs a factor of 7.1 
faster on the CRAY-1 than on the IBM 370-195. On either computer, this .SAS4A case runs 
appreciably faster than a corresponding SAS3D case, indicating that there can be sig­
nificant benefits from using vectorizable coding, even on a non-vector computer. It 
appears that even though the one-dimensional models in SAS3D strain the capacity of 
ANL's current computer~, an advanced computer such as a CRAY-1 would make it feasible 
to_ replace :na!:j' !.-D :::~dels wit!-: 2-D :::- 3-D models. 

INTRODUCTION 

The SAS series of computer codesl, 
2,3,4 are used to analyze hypothetical 
accidents in Liquid Metal Cooled Fast 
Breeder Reactors (LMFBRs), as well as Gas 
Cooled Fast Reactors (GCFRs). All of the 
existing codes in the SAS series, except 
for the original SASlA, have been capable 
of representing a reactor core with a 
quasi-three-dimensional treatment which 
uses coupled one-dimensional models to · 
approximate the real three-dimensional 
system. The current representation is 
adequate for many cases; but for some 
phenomena, local two-dimensional or three-. 
dimensional effects occur which can not be 
handled adequately with the current SAS 
one dimensional models. More detailed 
two- or three-dimensional models would 
probably require significantly more com­
puter time than the current models. Even 
with the current models, a detailed whole 
core analys~o ~it~ the SAS3D code can 
st~ain the capacity of the current IBM 
37Q-195 and IBM 3033 computers at Argonne 
National Laboratory (ANL); indicating 
that it may be desirable or necessary to 

consider the use of more advanced com­
puters if more detailed models are needed. 
Therefore, an effort was undertaken to 
address two main questions. First, how 
much effort would be required to get the 
SAS3D code, which is the current produc­
tion version in the SAS series, to run on 
an advanced computer? Would extensive 
re-writing of the code be necessary? 
Second, since the next SAS code, SAS4A, 
is currently being written frow scratch, 
as opposed to adding new modules onto 
SAS3D, can SAS algorithms and coding be 
modified so as to vectorize on a vector 
machine without sacrificing IBM, CDC 7600, 
or UNIVAC performance or portability? 
Under a grant from the National Center 
f~r Atmospheric Research, computer time 
on the NCAR CRAY-1 computer was available 
for this project. 

SAS CODES 

GENERAL DESCRIPTION 

The SAS codes have been developed 



.. 

_,.··:. 

!i 

to analyze the initiating phases of hypo­
thetical accidents in LMFBRs or GCFRs. 
SAS3D starts with steady-state calcula­
tions to determine the initial co.nditions 
in the reactor, usually normal operating 
conditions. Then transient accident cal­
culations are made for a user-specified 
event, such as loss of power to the pri­
mary coolant pumps, or insertion of 
reactivity at a user specified rate. 

In an LMFBR or a GCFR, the reactor 
core contains long, narrow fuel pins, 
which are steel tubes (cladding) con­
taining fuel pellets plus a gas plenum 
above or below the fuel to hold the gas­
eous fission products released during ir­
radiation of the fuel. The fuel pins are 
arranged in hexagonal airays within fuel 
subassemblies, with. coolant flowing in the 
axial direction between the pins. The 
subassemblies have steel, hexagonal shaped 
outer duct walls. The ducts are somewhat 
longer than the fuel pins to allow room 
above and below the pins for flow orifices 
and instrumentation. Typically, there are 
217 fuel pins, each 1/4 inch in diameter 

.and about 8 feet long, in a fuel subassem­
bly which is about 12 feet long. There 
are between 75 and a few hundred subassem­
blies in a reactor core. 

' Tlie geometry used by SAS3D to repre­
sent the reactor corP. r.nnsists of a number 
of "channels", where each channel repre­
sents a fuel pin and its associated 

.coolant.· Usually~ SAS channel is used 
to represe~t a subassembly or a group of 
similar subassemblies. In this case, the 
fuel pin represents an "average" pin in 
the subassembly. Coolant flow in a SAS 
channel is only in the axial direction, 
and heat flow in a pin is calculated only 
in the ra.dial direction. Because of the 
very large length-to-diameter ratio of the 
fuel pins, axial heat conduction within. 
the fuel pin or the coolant is negligible. 
The coolant removes heat by convection. 

Each SAS channel is divided into a 
number of axial nodes. Typically about 20 
axial nodes are used to represent the 
fueled part of the pin, and another 10-15 
nodes are used to represent the rest of 
the subassembly. At each axial node in 
the fuel section, about iO radial nodes 
are used in the fuel and 3 radial nodes 
are used in the clad. One radial node is 
used for the coolant, and one or two 
radial nodes are used for the "structure", 
which represents both the subassembly duct 
wall and the wrapper wires or grid spacers· 

which keep the pins in pos1t1on. Above 
and below the fueled section, only a few 
radial nodes are used. 

With this channel treatment, SAS3D 
calculates steady-state and transient tem­
peratures in the fuel, clad, coolant, and 
structure. Sodium boiling; clad melting, 
relocation, and freezing; fuel melting, 
relocation, and freezing; and interactions 
between molten fuel and liquid coolant are 
calculated. Also, the stresses and strains 
in fuel pins prior to pi~ failure, the 
amount of fission product gas in the fuel 
and its contribution to fuel relocation 
after pin failure, and the pressures and 
flow rates of the coolant in the core and 
around the primary coolant loop are cal­
culated. 

ADVANTAGES AND LIMITATIONS OF THE SAS 
CHANNEL REPRESENTATION 

One big advantage of the SAS channel 
representation is that it provides a 
.detailed, three-dimensional representation 
of the reactor core even though only one­
dimensional equations are ·solved; and the 
solution of one-dimensional equations is 
usually much faster than the solution of 
multi-dimensional equations. Detailed 
radial and axial temperature profiles in 
the fuel pin are obtained by solving a one 
dimensional radial heat transfer equation 
at each axial node. Coolant Lewperaturco 
and flows are obtained by solving one 
dimensional equations for the axial 
direction. Fuel and cladding reloca-
tion are calculated in the axial direc­
tion. Different subassemblies or groups 
of subassemblies can be represented by 
different SAS channels, providing detailed 
axial descriptions at a number of radial 
and azimuthal locations in the core. 

SAS3D only accounts for limited 
coupling between SAS channels, but this 
corresponds to the limited interaction 
between subassemblies in a reactor. The 
duct walls prevent coolant flow between 
subassemblies, except that the subassem­
blies all receive their coolant from a 
common inlet plenum and all discharge 
their coolant into a common outlet plenum. 
The common inlet and outlet plenums are 
accounted for in SAS3D. The different 
parts of the core are coupled neutroni­
cally, and this neutronic coupling is 
accounted for in the SAS3D neutronics 
calculations. There is some heat flow 
between the duct walls of adjacent 
subassemblies, whereas SAS3D uses an 



adiabatic boundary at the outside of the 
SAS "structure". Accounting for heat 
flow between subassemblies by computing 
heat transfer between the structures in 
different SAS channels could be done in 
a fairly straight-forward manner without 
changing the basic SAS channel represen­
tation. 

The main limitation of the'SAS chan­
nel representation is that it.does not 
account for any differences between fuel 
pins or coolant sub-channels within a 
subassembly. In reality, there are often 
power skews across a subassembly, the 
coolant sub-channels next to the duct 
walls are somewhat larger than those in 
the interior of the subassembly, and the 
duct walls have heat capacity and tend 
to act as limited heat sinks during a 
transient. The net result is that the 
interior of a subassembly is usually 
hotter than the edge, and sometimes one 
side is hotter than another. 

The use of an. "average pin" represen­
tation in SAS3D tends to average-out many 
of the variations within a subassembly and 
often gives good results. For instance, 
predictions of the boiling model in SAS3D 
usually agree reasonably well with the 
results of multiple-pin boiling tests.5,6 
On·the other hand, ~tis often necessary 
to aeeeunt for r.~.rH al i.n~nherence within 
a pin bundle to obtain satisfactory agree­
ment with clad melting and re-location 
experiments.7 A really adequate treatment 
of fuel relocation probably also requires 

· accounting for radial incoherence within 
a subassembly. 

POSSIBLE IMPROVEMENTS AND COMPUTER LIMITA­
TIONS 

Because of the above mentioned limita­
tions of the current SAS3D "single pi~' 
representation of a subassembly, it wou'lt! 
be desirable to have a "multiple pin" 
representation in which a subassembly is 
represented by a number of pins or pin 
groups with connected coolant channels. 

One problem with developing multiple 
pin models for whole-core accident analysis 
is that even the one-dimensional single pin 
models in SA53D strain the capacity of the 
current ANL computers. A 33 channel SAS3D 
case ca•l take 6 hours of computer time on 
the IBM 370-195 or IBM 3033. It also 
requires about 3 megabytes of memory on 
an IBM computer. Even a 1 channel case 
requires about 800 kilobytes of memory. 

On a CDC 7600 .the same 33 channel case 
would require about 3 hours and almost 
400,000 words of LCM storage. These 
computer times are almost entirely CPU 
times, since SAS3D does relatively little 
I/0 in a big run. If multiple-pin models 
were used, the running times would proba­
bly increase at least linearly with the 
number of pins used per subassembly, and 
the increase may be proportional to the 
square of the number of pins. 

Some computer codes· already exist 
for treating some aspects of intra­
subassembly incoherence. Because of com­
puter limitations, these codes are usually 
limited to treating single subassemblies 
instead of whole cores, and they are lim­
ited in the phenomena that they treat. 
For instance, both the COBRA-3 code8,9 and 
the COMMIX-1 codelO can compute detailed 
coolant temperature distributions within 
a subassembly. Either steady-state or pre­
voiding transient· calculations can be made 
by these codes. On the IBM 370-195 it is 
estimated that COMMIX-1 would require about 
2.5 hours to compute the steady-state tem­
peratures in all of the coolant sub-channels 
of a 217 pin subassembly. COBRA-3 can take 
20 minutes to calculate steady-state coolant 
temperatures for 12 coolant sub-channels. 

Because of the above mentioned com­
puter limitations, it is unlikely that 
maily pin (217 piu) modelo will bi!. nse<l in 
whole-core LMFBR accident analysis codes 
in the near future, even if significantly 
faster computers are used. On the other 
hand, a reasonable increase in computer 
speed would make it feasible to use "few 
pin" models for whole-core analysis. A 
well developed model using 2-5 pin groups 
to represent a subassembly would probably 
be quite adequate for most purposes. 

NUMERICAL ALGORITHMS AND CODING ASPECTS 

SAS3D is a relatively large code, and 
SAS4A will be larger. The source deck for 
SAS3D contains about 56,000 FORTRAN cards. 
The main reason that SAS3D is large is 
that it contains a number of separate, but 
coupled, modules for computing different 
aspects of an accident: heat transfer, 
coolant flow, fuel pin mechanics, sodium 
boiling, clad relocation, fuel relocation, 
fuel-coolant interactions, and neutronics. 

The equations solved by these mod­
ules are all different, but there are some 
aspects that are common to most of the 
modules. Finite differencing in both 
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space and time is used. A number of 
discrete nodes are used to obtain spatial 
variations, and the transient time behav-· 
ior is obtained using discrete time steps. 
Typically, the algorithms are set up to 
determine the conditions at each node at 
the end of a time step, starting from 
known conditions at the beginning of a 
time step. In general, the equations 
solved are non-linear, although. they are 
linearized across a time step. Semi­
implicit or fully implicit schemes are 
often used, leading to the simultaneous 
solution of linear equations with coef­
ficients that are re-calculated each time 
step. The resulting matrices are banded, 
often tri-diagonal. The calculation of 
the coefficients usually takes longer than 
the actual solution of the matrix equa­
tions. A significant .amount of computer 
time is used in obtaining physical and 
thermal properties as a function of tem­
perature, and sometimes as a function of 
pressure or other variables, by linear 
interpolation from tables or by the 
evaluation of numerical correlations. 

Since the SAS channels are only loosely 
coupled, SAS3D works on one channel at a 
time, completing a time step for one or 
more modules for .one channel before going 
on to the next channel. The arrays used 
for each channel a~e stored in a few "data 
packs". The data packs for a channe 1 RTP 

moved into working memory while the code 
is doing the calculations for that channel, 
and then moved out to a storage area. 
Thus, every time step the data pa~ks for 
each channel are moved into and out of the 
working area a few times, and each code 
module is entered at least once for each 
channel in which the module is active. 
They are.often 1000 or more time steps in 
a run. 

On an IBM or CRAY-1 computer, the . 
storage area is in main memory. On a CDC 
7600, working memory is in SCM, and the 
storage area is in LCM. There are about 
9000 words per channel in the data packs. 

. In principal the storage area could be on 
disk, but in practice it is best to have 
the whole calculation core-contained. 
Storing either coding overlays or data 
packs on disk adds tremendous amounts of 
I/0 time and increases the total running 
time by about an order of magnitude. 

One important aspect of SAS3D is that 
no one small area of the code accounts for 
the bulk of the computing time, and no one 
subroutine accounts for more than about 15% 

of the total time on the IBM 370-195. The 
computing time is spread through many mod­
ules and many subroutines. Therefore, dra­
matic improvements in running time can not 
be obtained by improving a single algorithm 
or a single subroutine. In order for the 
code as a whole to run well, a large number 
of subroutines must each run well. 

CODE PORTABILITY 

SAS3D is currently being used by many 
organizations in the U.S and abroad on CDC, 
IBM, and UNIVAC computers. Therefore, it 
was written with yortability in mind. ANSI­
standard FORTRANl is used almost entirely, 
and machine-dependent features are avoided. 
The few machine-dependent features that are 
required are mainly isolated in a few sepa­
rate subroutines. 

The UPDAT Code. One feature that cont.rib­
utes to both the .portability and the main­
tainability of SAS3D is the use of the 
UPDAT code to modify the SAS3D source files. 
UPDAT, which was written at ANL by R. George, 
has many of the features of CDC's UPDATE 
code,l2 such as inserting and deleting 
cards, and inserting COMDECKS. In the 
SAS3D source, the COMMON blocks are listed 
only once, and the COMDECK feature is used 
to insert the common blocks in each sub­
routine where they are needed. UPDAT is 
also used to m~ke corrections or modifica-
tions to the code. · 

Programs with features similar to 
those of UPDATE have been available on 
IBM computers, but the IBM codes and. CDC's 
UPDATE use different directives and require 
different input. The UPDAT code, which 
was written in FORTRAN, runs on IBM, CDC, 
and UNIVAC computers, and all versions use 
the same input. Therefore, the same UPDAT 
input deck can be used to modify or cor­
rect the IBM, CDC, and UNIVAC versions of 
the code. 

RUNNING SAS3D ON THE CRAY-1 

Considering the size of the SAS3D 
code, it was relatively easy to get the 
code running on the NCAR CRAY-1. A few 
routines known to be machine dependent had 
to be modified, but the modifications were 
straight-forward. Also, the Cray Fortran 
Compilerl3 (CFT) would not compile a few 

. statements, but these were mainly cases of 
violating the ANSI FORTRAN standards. 
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The actual process of putting SAS3D 
on the NCAR computer and running it was 
all done from ANL using a remote batch 
terminal. The main steps in this process 
were as follows. 

1. A FORTRAN source tape was written at 
ANL and sent to NCAR. This tape contained 
3 files. The first file was the source 
for the UPDAT program. The second file 
contained the SAS3D COMMON blocks, and 
the third file was the SAS3D source file. 

2. The UPDAT program was compiled after 
the necessary modifications to the UPDAT 
source were made using the system UPDATE 
utility. 

3. UPDAT was used to insert the common 
blocks into the SAS3D routines and to 
make modifications to the SAS3D source. 

4. The resulting SAS3D source code was 
compiled, and both the source file and 
the object. file were stored in permanent 
datasets on the CRAY-1 disks. 

5. Sample SAS3D cases were run, and 
the results were compared with IBM and 
CDC results .. 

The CDC version of the export ver­
.sion of UPDAT was sent to NCAR. · Some 
changes to thio code t~er11 reo:p.d.t"~tl t.n 
get it to run on the CRAY-1. Frist, 
some machine-depelluent constants h.::td 
to be changed to. account for differences 
in word length and data representation. 
The CDC 7600 uses.ten 6 bit characters 
per 60 bit word, whereas the CRAY-1 uses 
eight 8 bit characters per 64 bit word. 
Fortunately these constants were all set 
at the same place in DATA statements, so 
it was easy to change them. Second, in 
one spot the CRAY-1 version required the 
FORTRAN function SHIFTR instead of the . 
SHIFT function used in the CDC version. 
Third, the UPDAT directive *END happens 
to correspond to a NCAR control card, so 
in UPDAT this directive was changed to 
*EEND by changing one DATA statement. 

The CDC 7600 version of SAS3D was 
sent to NCAR. This version is overlayed, 
with a special overlay routine that stores 
overlays in LCM rather than on disk. 
Since the NCAR CRAY-1 has plenty of main 
memory, and no LCM, the CRAY version of 
SAS3D w.::ts not overlayed. Thus, all of 
the OVERLAY and CALL OVERLAY cards were 
removed, as well as subroutine OVERLAY. 

Another known machine-dependent aspect 
was the data pack storage area and the rou­
tines that store and retrieve data packs. 
On the CDC 7600, the routines READEC and 
WRITEC, written in COMPASS, are used to 
store blocks of data in LCM when they are 
not being used, and to put them back in 
SCM when they are needed. On the ANL IBM 
machines, the data packs are stored in main 
memory, using specially optimized FORTRAN 
versions of READEC and WRITEC. On the 
CRAY-1, the data packs are stored at the 
end of blank common, using simple FORTRAN 
versions of READEC and WRITEC. The CRAY 
FORTRAN compiler (CFT) automatically vec­
torizes these versions of READEC and WRITEC. 
Since the CRAY loader loads coding from the 
bottom of memory up, with blank common at 
the end of the coding, and since I/0 buffers 
start at the top of memory and work down, 
any unused memory is between the end of 
blank common and the bottom of the 1/0 
buffers. Therefore, the.effective length 
of the data pack ·storage area at the end 
of blank common can be set at run time by 
specifying the total job memory size to 
correspond to the size of the problem being 
run .• 

Another machine-dependent aspect of 
SAS3D is the timing routine TLEFT. For 
the CRAY-1, a TLEFT routine that sets 'J.'~FT 

. to 1,000,000-lOO.*SECOND(l.O) was used, 
where SECOND is the elapsed. CPU time. 
This version gives the correct timing of 
various parts of the code, but it does not 
give an accurate warning when the code is 
approaching a time limit. 

Some accumulated SAS3D modifications 
were also incorporated into the CRAY-1 
version. These modifications are minor 
items that correct some. known non-standard 
usages in the code. 

The first attempt to compile SAS3D 
on the CRAY-1 turned up only 6-8 FORTRAN 
errors. One error was in a DATA statement 
in subroutine RESTAR. The IBM version of 
this statement uses a 4H specification, 
the CDC version uses lOH, and the CRAY 
version requires 8H. The other errors 
were all cases of non-standard separators 
in FORMAT statements. The CRAY compiler 
does not allow two consecutive comma 
separators or ,/, in a FORMAT statement. 
Apparently the IBM and CDC systems ignore 
spurious commas in FORMAT statements. 

After SAS3D compiled, the first at­
tempt to run .a case turned up one last 
problem. Subroutine WRITEI is a multiple-



.·.·,. 

·.i 

entry routine, even though it should have 
been written originally as two separate 
single-entry routines. The CRAY compiler 
uses an IBM-type convention for passing 
arguments to multiple entry points, 
whereas the CRAY version of SAS3D started 
as a CDC version, with a different treat­
ment of multiple entry points. 

After the entry point problem was 
corrected, a number of SAS3D cases have 
been run successfully without encountering 
any· additional problems. 

Linear Interpolation Routines 

Although the Cray Fortran Compiler -
will automatically vectorize part of the 
SAS3D coding, the FORTRAN coding in three 
linear interpolation routines, INTIRP, 
INTERP, and INTRP, will not vectorize. 
These routines provide an area in which 
moderate improve·ments in CRAY performance 
can be achieved with relatively little 
effort, since they are small routines 
that account for a moderate fraction of 
the total running time. 

INTIRP scans a table of Y as a func­
tion of X. It obtains the result Y1, 
corresponding to the input value X1, by 
linear interpolation between the appro­
priate table values. INTERP is the same 
as ·INTllU', exeepr that INTERP is pasocd 
an extra parameter, !FUEL, the fuel type; 
and the tables used by INTERP contain 
entries for each fuel type, i.e., theY 
array has two subscripts, Y(J, IFDEL). 
INTRP takes a whole array of input vari-

.... ables, Xl(I), and an array of fuel types, 
IFUELI(I), and it computes a whole array 
of output results, Yl(I). 

Timing studies on both the IBM 370-
195 and the CDC 7600 have shown that 
INTIRP and INTERP spend more time scanning 
the tables to find the appropriate table 
entries than they do in the actual inter-

··· polation. INTIRP and INTERP always start 
scanning from the start of the table. 
INTRP starts scanning at the start of the 
table for the first variable in the input 
array. For later values in the imput array, 
INTRP starts scanning the table at the 
location where it found the previous value. 

The table scanning loop in these rou­
tines was written in a somewhat convoluted 
manner in order to get into loop-mode on 
the IBM 370-195, since significant speed 
improvements are often achieved in loop­
mode. A simple DO loop containing an IF 

statement that jumps out of the loop when 
the appropriate table location has been 
found will not run in loop-mode on the 195. 
The logic required to achieve loop-mode on 
the IBM machine degrades the performance 
on CDC and CRAY computers, both of which 
will run the simple DO loop version as a 
simple in-stack loop. 

The Cray Fortran Compiler uses only 
scalar instructions to compile either the 
convoluted scanning loop or the simple 
scanning loop in the interpolation rou­
tines. Therefore, CAL verisons of these 
routines were written to use the vector 
compare instructions on the CRAY-1. Also, 
the CAL version of INTRP performs the ac­
tual interpolation calculations in vector 
mode. 

Timing Results for Interpolation Routines. 
For timing purposes a simple driver pro­
gram was written _to call-the interpolation 
rout{nes with the proper arguments. The 
tables used for this program had a length 
of 20, which is typical of the tables used 
in SAS3D. An array of 12 values of X1(I) 
was used, and these values were distributed 
fairly evenly over the tables. The values 
used for !FUEL were 1.,1,1,1,2,2,2,2,3,3,3,3. 
For timing INTIRP an inner DO loop in the 
driver made 12 separate calls to the rou- · 
tine using the appr.opriate values for X1 
and IFIJF.T.. Fnr timing INTRP, one call was 
made to obtain an array of 12 results. In 
order to obtain running times large enough 
to measure, an outer DO loop was used to 
call INTRP 1000 times or to execute the 
inner loop for INTIRP 1000 times. Thus, 
the measured times are for 1000 calls to 
INTRP or 12,000 calls to INTIRP. Since 
INTERP is very similar to INTIRP, it was 
not timed. 

Table 1 lists the running times mea­
sured for these routines. The simple DO 
loop for scanning does somewhat better 
than the original coding on any computer. 
One call to INTRP with an array of 12 
values takes less time than the correspond­
ing 12 calls to INTIRP, partly because sub­
routine linkage overhead accounts for a 
moderate fraction of the total INTIRP time, 
and partly because of the more.efficient 
table scanning in INTRP. The FORTRAN ver­
sions of these routines run a factor of 
2-2.5 times as fast on the CRAY-1 as on 
the IBM computers. The use of t:he vector 
compare instructions, as well as generally 
tighter coding, in the CAL version improves 
the CRAY speed by an additional factor of 
3-4. 



Table 1. Timing results for interpolation 
routines. 

Computer, CPU time (seconds) for 
Comeiler 12,000 results 

INTRP INTIRP 
original simple 
coding scanning 

DO looe 

IBM 370-195 .165 .366 .320 
FTH,a OPT=2 

IBM 3033 .160 .305 
FTH, OPT=2· 

CDC 7600 .121 .224 .165 
FTN4,b OPT=2 

CRAY-1 .067 .178 .127 
CFT 

CRAY-1 .021 .032 
CAL 

aiBM's Fortran H compiler 
bene's Fortran Extended, Version 4 com­

piler, as implemented on the Lawrence 
Berkeley Laboratory Computers. 

SAS3D TIMING RESULTS 

Timing comparisons for the SAS3D code 
are complicated by two factors. First, 
there is no one small section of the code 
that accounts for the g~P~t. hulk of the 
computing time. It is necessary to run 
the whole code, or a Gignificant fraction 
of the code, in order to get meaningful 
timing comparisons. Second, there are 
many types of cases in which it is not 
possible to get exactly the same results 
on different computers. In many cases, 
differences in running times between com­
puters are due to both differences in com­
puter speeds and differences in computa­
tional paths. 

Three different SAS3D cases were run 
on the CRAY-1. The first case was a 
limited case which exercised only part of 
the code, but it was a case for which the 
same computed results are achieved on all 
computers, so that exact timing compari­
sons are meaningful. This was the first 
300 time steps of a 1-channel low power 
boiling case (LOWBLA). This run was ter­
minated before boiling initiation, so it 
only tested the pre-boiling parts of the 
code. 

The second case was a more extensive 
1-channel case: 1000 time steps for chan­
nel 1 of a 33-channel CRBR transient under­
cooling case (1-channel test). This case 
gets into sodium boiling, clad relocation, 
and fuel relocation (SLUMPY). The results 
obtained on different computers for this 
case were not identical, but they were 
quite similar; and the computational paths 
were quite similar. 

The third case was .the standard SAS3D 
3-channel test case (3-channel test). This 
case was run mainly to test the code ·rather 
than to get timing comparisons. This case 
tests most of the options in the code. It 
is an extremely touchy case with an appre­
ciable amount of positive feed-back. Any 
small deviation, due to factors such as 
round-off error, tends to grow as the run 
progresses, and it is not possible to get 
the same results for this case on different 
computers. Even the IBM.370-195 and the IBM 
3033 give different results for this case. 

Table 2 gives the running times on 
various computers for these cases. Also, 
given in parentheses are the relative 
speeds, with the IBM 370-195 speed defined 
as 1 for each case. 

Table 2. SAS3D timing 

CPU time, 
Com12uter (Kelative 

LOWBLA, 
1 channel, 
300 steps, 
no boiling 

IBM 370/ 44.1 
195 (1. 0) 

IBM 3033 43.8 
(1.01) 

CDC 7600 19.4 
(2.27) 

CRAY-1 11.8 
CFTb (3.73) 

CRAY-1 9.7 
CALC (4.55) 

comparisons. 

seconds 
speed, 1/CPU Limt:) 

1 channel 3-channel 
test, 
1000 
steps 

333.3 
(1. 0) 

309.1 
(1.08) 

162.9 
(2.05) 

129.6 
(2.57) 

95.5 
(3.49) 

testa 

740.0 
(1. 0) 

453.9 
(1. 63) 

186.2 
(3. 97) 

aTiming comparisons are not very 
meaningful for the 3-channel test case. 
bAll-Fortran version. 
CCAL versions for three interpolation 

routines, everything else Fortran. 



SAS3D runs slightly faster on the 
IBM 3033 than on the 195, about twice as 
fast on the CDC 7600 as on the 195, and 
a factor of 2.5 to 4 times as fast on the 
CRAY-1 as on the 195. 

The only area in which performance 
improvement for SAS3D on the CRAY-1 was 
investigated was the three linear inter­
polation routines. Use of the CAL ver­
sions of these routines led to an improve­
ment of 20% - 35% in the overall running 
time of SAS3D. 

SAS4A 

The initial version of SAS4A contains 
· mainly steady-state and pre-voiding tran­
sient heat transfer and coolant flow rou­

.tines. Other modules are being added as 
they are developed, but this initial ver­
sion is the only one that has been run on 
the CRAY-1. 

There are two main differences be­
tween these SAS4A.pre-voiding routines and 
the corresponding SAS3D routines. First, 
the pre-voiding SAS4A module contains rou­
tines that have been especially tailored 
for prevoiding transient calculations, 
whereas in SAS3D the· corresponding routines 
are generalized routines that handle the 
whole transient. Second, the algorithms 
used in the pre-voiding ~outines were modi­
fied somewhat to promote vectorization. 
This did not require major changes in 
algorithms; mainly it involved re-ordering 
of calculations and sometimes the·saving 
of arrays of interim results. Also, some 
changes in programming style were required 
to eliminate cases where the basic algorithm 
allowed vectorization but programming style 
precluded it. 

Most of the pre-voiding transient 
coolant calculations vectorized easily •. 
These calculations consist mainly of obtain­
ing coolant properties at each axial coolant 
node by evaluating parametric fits. The 
fits are all single range fits containing no 
branching, and properties for all coolant · 
nodes can be calculated in parallel. Also, 
.since typically about 30 coolant nodes are 
used, vector lengths of about 30 were 
achieved. 

In cases where a complete calculation 
could not be vectorized, part of the cal­
culation often could. For instance, the 
calculation of the coolant pressure at node 
J requires the value from node J-1, so the 
calculation could not be vectorized. In 

this case, the calculation of the node­
to-node pressure differences would vec­
torize, and this calculation accounts for 
most of the computing time in this area. 
Then a small non-vectorized loop sums the 
differences to give the final results. 

Vectorizing the heat transfer rou­
tines was more difficult. For each axial 
node, the temperatures at all radial nodes 
are solved for simultaneously by solving 
a tri-diagonal matrix equation. Many of 
the calculations used to obtain the coef­
ficients of the matrices were vectorized, 
but the vector lengths were usually· no 
longer than the number of radial nodes, 
which typically ranges from 4 or 5, above 
and below the fueled region, to about 17 
in the fueled region. The tri-diagonal 
matrix solution itself does not vectorize 
in the pre-voiding mdule, although in the 

.voiding module the corresponding matrix 
·solution might be vectorized by solving 
for all axial nodes simultaneously. In 
the pre-voiding calculation, the computed 
coolant temperature at axial node J is 
needed to obtain some of the coefficients 
for node J+l; but in the voiding module, 
the coolant temperatures are calculated 
separately in the coolant routines, and 
in the fuel pin heat transfer routines 
there is no coupling between axial nodes. 

SAS4A TIMING RESULTS 

A non-voiding case with 1000 time 
steps was timed using the initial version 
of SAS4A. In addition to total running 
times, a timing distribution by subroutine 
was also obtained. For the timing distri­
bution, the CFT timing trace was used on 
the CRAY-1, the PROGLOOK feature was used 
on the ANL IBM 370-195, and a combination 
of the SNOOPY routines plus a number of 
calls to SECOND was used on the CDC 7600. 
For this case, the steady-state initial­
ization accounts for less than 1% of the 
running time, so it was mainly the pre­
voiding transient routines that were timed. 
Tables 3 and 4 give these timing results. 

These timing results indicate that 
SAS4A runs about six times as fast on the 
CRAY-1 as on the IBM 370-195; with CAL 
versions of the interpolation routines, 
the speed ratio increases to seven. The 
CDC 7600 version also runs appreciably 
·faster than the IBM version, but the CRAY-1 
version still runs a ~actor of 2.1 to 2.5 
times as fast as the CDC 7600 version. 
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·Table 3. SAS4A timing comparisons. 

Computer 

IBM 370-195 

IBM 3033 

CDC 7600 

CRAY-1, CFTa 

CRAY-1, CALb 

CPU time 
seconds 

43.6 

46.5 

15.49 

7.37 

6.14 

Relative speed 
1/CPU time 

1.0 

.94 

. 2.8 

5.9 

7.1 
8All-Fort~an version. 
heAL versions of interpolation routines, 

CFT for rest of code. 

Table 4. Detailed breakdown of SAS4A 
timing. 

Program 
area 

heat transfer, 
except 
matrix 
solution 

tnAt;rix 
solution 

interpolation 
routines 

coolant 
routines 

log, exp, xY 

READEC, 
WRITt:C, 

data pack 
movement 

CPU time, 
(percentage 

IBM CDC 
370-195 7600 

9.98 
(23%) 

1.81 
(4%) 

4.38 
(10%) 

2.03 
(5%) 

6.85 
(16%) 

9.22 
(21%) 

4.54 
(29%) 

1.41 
(9%) 

3.46 
(22%) 

1.19 
(8%) 

1.84 
(12%) 

.56 
(4%) 

seconds 
of total) 

CRAY-1 
CFT CALa 

2.01 
(27%) 

.51 
(7%) 

1.91 
(26%) 

.42 
(6%) 

b 

.32 
(4%) 

2.01 
(33%) 

.51 
(8%) 

.68 
(11%) 

.42 
(7%) 

b 

.32 
(5%) 

formatted I/0 8.41 
(19%) 

2.38 2.10 
(15%). (29%) 

2.10 
(34%) 

other 

total 

.92 
(2%) 

.11 
(1%) 

.10 
(1%) 

.10 
(2%) 

43.6 15.49 7.37 6.14 
(100%) (100%) (100%) (100%) 

seAL versions of INTRP, IINTIRP, CFT for 
rest of code. 
bincluded with coolant routines. 

Comparisons with the LOWBLA times in 
Table 2 for 300 pre-voiding steps show that 
SAS4A runs 1000 steps in about the same 
ti~e that SAS3D require~ for 300 steps. 
About 1/3 of the SAS3D time for this case 
was accounted for by the DEFORM module, 
which has not been incorporated into SAS4A · 
yet; but the remaining 2/3 of the time is 
in routines corresponding to the SAS4A 
routines. This indicates that the heat 
transfer and coolant routines in SAS4A run 
about twice as fast as the corresponding 
SAS3D routines. On the CRAY-1, the SAS4A 
speed improvement is greater than a factor 
of two. 

Formatted I/0, mainly printing tran­
sient resQlts, accounted for an appreciable 
fraction of the total CPU time for this 
case. In 6 seconds of computing on the 
CRAY-1, this case printed 213 pages of 

·output. For longer runs, it will be 
necessary t.o reduce greatly the amount of 
print-out per second of computation. 

The log and exponential functions are 
called by the coolant routines. On the 
IBM and CDC computers, and maybe on the 
CRAY-1 also, they account for the bulk of 
the time spent in the coolant routines. 
The coolant routines vectorized well on 
the CRAY-1, and thia ahows in the •elative 
coolant calculation times. On the CRAY-1, 
the coolant routines, i11cluding the Iog 
and exponential functions, run about 21 
times as fast as on the IBM 370-195, or 
about 7.2 times as fast as on the CDC 7600. 

The data pack movement is quite a bit 
slower on the IBM 370-195 than on either 
the CRAY-1 or the CDC 7600. This reflects 
the relatively slow speed of the main 
memory on the IBM 370-195. 

SUMMARY AND CONCLUSIONS 

The SAS3D code was run on the CRAY-1 
computer with only minor modificaitons to 
the code, and it ran reasonably well. On 
the CRAY-1, SAS3D runs 3.5 to 4 .. 5 times as 
fast as on the IBM 370-195, or about twice 
as fast as on the CDC 7600. The IBM and 
CDC compilers that are used with SAS3D are 
highly developed compilers that produce 
well optimized object code, so the perform­
ance of SAS3D on the CRAY-1 is a reflection 
of the basic speed of the CRAY-1 hardware, 
as well being an indiciation that the CFT 
compiler produces moderately efficient 
object code. 
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Writing new pre-voiding heat transfer 
and coolant flow routines. for SAS4A, using 
new algorithms and coding that would vec­
torize where possible, led to significant 
speed.improvements on all three computers. 
The CRAY-1 version of SAS4A runs about 
2.5 times as fast as the CDC 7600 version, 
which runs 2.8 times as fast as the IBM 
370-195 version. Even the IBM yersion of 
SAS4A runs about twice as fast as the cor­
responding IBM version of SAS3D. Some of 
the improved speed of SAS4A, as compared 
to SAS3D, w~s probably due to the use of 
somewhat better algorithms and the elimina­
tion of some unnecessary calculations, but 
much of this improvement is probably due 
to the fact that coding that vectorizes 
on a CRAY-1 tends to run efficiently on 
an IBM 370-195 or a CDC 7600. Therefore, 
new coding for the SAS codes should be 
vectorizable where possible, even if it 
is not expected that the.se codes will be 
run extensively on vector machines in the 
near future. 

The performance attained by SAS3D and 
SAS4A on the CRAY-1 was partly due to the 
ability of the CRAY-1 to use short· vectors 
effectively. Many of the vector lengths 
in these codes are in the range from 10-20, 
and some are as small.as 3 or 4. Other 
than block transfers, none of·the vector 
lengths is currently greater than 48. The 
SAS codes probably would not perform well 
on a computer designed for long vectors. 

The computing speed attainable on a 
CRAY-1 computer should make it feasible to 
develop "few pin" models for whole core 
accident analysis, if the models are 
carefully developed and coded so as to 
optimise computer performance. Such cal­
culations may even be feasible on a CDC 
7600. Even on a CRAY-1, detailed many pin 
(217 pins per subassembly) models would 
probably still be restricted to limited, 
single subassembly cases because of running 
time considerations. 
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