Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information

Swelling behavior of a simple ferritic alloy. [Fe-10% Cr]

Conference ·
OSTI ID:5656863

The swelling behavior which results from simulated fusion environment irradiation of Fe-10% Cr has been characterized with transmission electron microscopy. Specimens were bombarded at 850 K with: a triple-beam of He/sup +/, D/sup +//sub 2/, and 4 MeV Fe/sup + +/ ions to 0.3, 1, 3, 10, 30, and 100 dpa, a dual-beam of He/sup +/ and 4 MeV Fe/sup + +/ ions to 30 and 100 dpa; and a single-beam of 4 MeV Fe/sup + +/ ions to 30 dpa. The helium and hydrogen injection rates were approx. 10 appm He/dpa and approx. 40 appm D/dpa. Cavities were observed for damage levels of 3 dpa and greater. The swelling was <0.1% for damage levels <30 dpa, but at 100 dpa, there was an increase in the swelling to 2.5% for the triple-beam irradiation and 1.2% for the dual-beam irradiation. The swelling rates between 30 and 100 dpa correlate well with calculated values assuming a steady-state swelling-rate regime has been reached. Calculations show the rapid cavity growth associated with this swelling increase cannot be attributed to equilibrium bubble growth. For all of the bombardments, the cavities with a diameter greater than 10 nm had a truncated octahedral morphology with (111) facets and (100) truncations. Measurements indicate that the surface energy relationship was ..gamma../sub 111/approx. =0.8 ..gamma../sub 100/ for these cavities. At 30 dpa, the cavities in the specimen irradiated with the single-beam technique were larger and had a lower concentration than the specimens irradiated with specimens irradiated with the dual- and triple-ion beams suggests that deuterium has an effect on the damage microstructures in Fe-10% Cr.

Research Organization:
Oak Ridge National Lab., TN (USA)
DOE Contract Number:
W-7405-ENG-26
OSTI ID:
5656863
Report Number(s):
CONF-830659-17; ON: DE84003162
Country of Publication:
United States
Language:
English